Vitamine D – Fiche d’information pour les professionnels de la santé | FitConvo

0 0


Une femme discute de suppléments avec un pharmacien.

Pour plus d’informations sur la vitamine D et le COVID-19, voir Compléments alimentaires à l’heure du COVID-19.

introduction

La vitamine D (également appelée « calciférol ») est une vitamine liposoluble qui est naturellement présente dans quelques aliments, ajoutée à d’autres et disponible sous forme de complément alimentaire. Il est également produit de manière endogène lorsque les rayons ultraviolets (UV) du soleil frappent la peau et déclenchent la synthèse de vitamine D.

La vitamine D obtenue à partir de l’exposition au soleil, des aliments et des suppléments est biologiquement inerte et doit subir deux hydroxylations dans le corps pour être activée. La première hydroxylation, qui se produit dans le foie, convertit la vitamine D en 25-hydroxyvitamine D [25(OH)D], également connu sous le nom de « calcidiol ». La deuxième hydroxylation se produit principalement dans le rein et forme la 1,25-dihydroxyvitamine D physiologiquement active [1,25(OH)2D], également connu sous le nom de « calcitriol » [1].

La vitamine D favorise l’absorption du calcium dans l’intestin et maintient des concentrations sériques adéquates de calcium et de phosphate pour permettre une minéralisation osseuse normale et prévenir la tétanie hypocalcémique (contraction involontaire des muscles, entraînant des crampes et des spasmes). Il est également nécessaire pour la croissance osseuse et le remodelage osseux par les ostéoblastes et les ostéoclastes [1-3]. Sans une quantité suffisante de vitamine D, les os peuvent devenir minces, cassants ou déformés. La suffisance en vitamine D prévient le rachitisme chez les enfants et l’ostéomalacie chez les adultes. Avec le calcium, la vitamine D aide également à protéger les personnes âgées contre l’ostéoporose.

La vitamine D a d’autres rôles dans le corps, notamment la réduction de l’inflammation ainsi que la modulation de processus tels que la croissance cellulaire, la fonction neuromusculaire et immunitaire et le métabolisme du glucose. [1-3]. De nombreux gènes codant pour des protéines qui régulent la prolifération, la différenciation et l’apoptose cellulaires sont modulés en partie par la vitamine D. De nombreux tissus ont des récepteurs de vitamine D, et certains convertissent le 25(OH)D en 1,25(OH)2D.

Dans les aliments et les compléments alimentaires, la vitamine D se présente sous deux formes principales, D2 (ergocalciférol) et D3 (cholécalciférol), qui ne diffèrent chimiquement que par la structure de leurs chaînes latérales. Les deux formes sont bien absorbées dans l’intestin grêle. L’absorption se fait par simple diffusion passive et par un mécanisme faisant intervenir des protéines porteuses de la membrane intestinale [4]. La présence simultanée de graisse dans l’intestin améliore l’absorption de la vitamine D, mais une partie de la vitamine D est absorbée même sans graisse alimentaire. Ni le vieillissement ni l’obésité ne modifient l’absorption de la vitamine D par l’intestin [4].

La concentration sérique de 25(OH)D est actuellement le principal indicateur du statut en vitamine D. Il reflète la vitamine D produite de manière endogène et celle obtenue à partir d’aliments et de suppléments [1]. Dans le sérum, la 25(OH)D a une demi-vie circulante assez longue de 15 jours [1]. Les concentrations sériques de 25(OH)D sont indiquées à la fois en nanomoles par litre (nmol/L) et en nanogrammes par millilitre (ng/mL). Une nmol/L équivaut à 0,4 ng/mL et 1 ng/mL équivaut à 2,5 nmol/L.

L’évaluation du statut en vitamine D par la mesure des concentrations sériques de 25(OH)D est compliquée par la grande variabilité des tests disponibles (les deux plus courants impliquent des anticorps ou la chromatographie) utilisés par les laboratoires qui effectuent les analyses [5,6]. Par conséquent, un résultat peut être faussement bas ou faussement élevé, selon le test utilisé et le laboratoire. Le programme international de normalisation de la vitamine D a mis au point des procédures pour normaliser la mesure en laboratoire du 25(OH)D afin d’améliorer les pratiques cliniques et de santé publique. [5,7-10].

Contrairement au 25(OH)D, le 1,25(OH)2D circulant n’est généralement pas un bon indicateur du statut en vitamine D car il a une courte demi-vie mesurée en heures et les taux sériques sont étroitement régulés par l’hormone parathyroïdienne, le calcium , et phosphate [1]. Les niveaux de 1,25(OH)2D ne diminuent généralement pas jusqu’à ce que la carence en vitamine D soit sévère [2].

Concentrations sériques de 25(OH)D et santé

Bien que le 25(OH)D fonctionne comme un biomarqueur d’exposition, la mesure dans laquelle les niveaux de 25(OH)D servent également de biomarqueur d’effet sur le corps (c. [1,3].

Les chercheurs n’ont pas définitivement identifié les concentrations sériques de 25(OH)D associées à une carence (par exemple, le rachitisme), une adéquation pour la santé osseuse et la santé globale. Après avoir examiné les données sur les besoins en vitamine D, un comité d’experts du Food and Nutrition Board (FNB) des National Academies of Sciences, Engineering, and Medicine (NASEM) a conclu que les personnes couraient un risque de carence en vitamine D au niveau sérique 25(OH) Concentrations de D inférieures à 30 nmol/L (12 ng/mL ; voir le tableau 1 pour les définitions de « carence » et « insuffisance ») [1]. Certaines personnes sont potentiellement à risque d’insuffisance à 30 à 50 nmol/L (12 à 20 ng/mL). Des niveaux de 50 nmol/L (20 ng/mL) ou plus sont suffisants pour la plupart des gens. En revanche, l’Endocrine Society a déclaré que, pour la pratique clinique, une concentration sérique de 25(OH)D de plus de 75 nmol/L (30 ng/mL) est nécessaire pour maximiser l’effet de la vitamine D sur le calcium, les os et les muscles. métabolisme [11,12]. Le comité FNB a également noté que des concentrations sériques supérieures à 125 nmol/L (50 ng/mL) peuvent être associées à des effets indésirables [1] (Tableau 1).

Tableau 1 : Sérum 25-Hydroxyvitamine D [25(OH)D] Concentrations et santé [1]
nmol/L* ng/mL* État de santé
<30 <12 Associé à une carence en vitamine D, pouvant conduire au rachitisme chez le nourrisson et l’enfant et à l’ostéomalacie chez l’adulte
30 à <50 12 à <20 Généralement considéré comme inadéquat pour les os et la santé globale chez les individus en bonne santé
50 20 Généralement considéré comme adéquat pour les os et la santé globale chez les individus en bonne santé
>125 >50 Lié à des effets indésirables potentiels, en particulier à >150 nmol/L (>60 ng/mL)

*Les concentrations sériques de 25(OH)D sont indiquées à la fois en nanomoles par litre (nmol/L) et en nanogrammes par millilitre (ng/mL). Une nmol/L = 0,4 ng/mL et 1 ng/mL = 2,5 nmol/L.

Les concentrations sériques optimales de 25(OH)D pour les os et la santé générale n’ont pas été établies car elles sont susceptibles de varier selon le stade de la vie, la race et l’origine ethnique, et avec chaque mesure physiologique utilisée [1,13,14]. De plus, bien que les niveaux de 25(OH)D augmentent en réponse à un apport accru en vitamine D, la relation est non linéaire [1]. La quantité d’augmentation varie, par exemple, selon les taux sériques de base et la durée de la supplémentation.

Apports recommandés

Les recommandations d’apport en vitamine D et autres nutriments sont fournies dans les apports nutritionnels de référence (ANREF) élaborés par les comités d’experts de la NASEM [1]. L’ANR est le terme général désignant un ensemble de valeurs de référence utilisées pour planifier et évaluer les apports nutritionnels des personnes en bonne santé. Ces valeurs, qui varient selon l’âge et le sexe, comprennent :

  • Apport nutritionnel recommandé (AJR) : apport quotidien moyen suffisant pour répondre aux besoins nutritionnels de la quasi-totalité (97 % à 98 %) des individus en bonne santé ; souvent utilisé pour planifier des régimes alimentaires adéquats sur le plan nutritionnel pour les individus.
  • Apport adéquat (AS) : l’apport à ce niveau est supposé garantir l’adéquation nutritionnelle ; établie lorsque les preuves sont insuffisantes pour développer une AJR.
  • Besoin moyen estimé (BME) : niveau moyen d’apport quotidien estimé pour répondre aux besoins de 50 % des individus en bonne santé ; généralement utilisé pour évaluer les apports nutritionnels de groupes de personnes et pour planifier des régimes alimentaires adéquats sur le plan nutritionnel pour eux ; peut également être utilisé pour évaluer les apports nutritionnels des individus.
  • Apport maximal tolérable (UL) : Apport quotidien maximal peu susceptible de causer des effets néfastes sur la santé.

Un comité du FNB a établi des AJR pour la vitamine D afin d’indiquer les apports quotidiens suffisants pour maintenir la santé des os et le métabolisme normal du calcium chez les personnes en bonne santé. Les AJR pour la vitamine D sont indiqués à la fois en microgrammes (mcg) et en unités internationales (UI); 1 mcg de vitamine D équivaut à 40 UI (tableau 2). Même si la lumière du soleil est une source majeure de vitamine D pour certaines personnes, la FNB a basé les AJR de vitamine D sur l’hypothèse que les personnes reçoivent une exposition minimale au soleil. [1]. Pour les nourrissons, le comité FNB a développé des AI basés sur la quantité de vitamine D qui maintient les taux sériques de 25(OH)D au-dessus de 20 ng/mL (50 nmol/L) et soutient le développement osseux.

Tableau 2 : Apports nutritionnels recommandés (ANR) pour la vitamine D [1]
Âge Homme Femelle Grossesse Lactation
0-12 mois* 10 mcg
(400 UI)
10 mcg
(400 UI)
1-13 ans 15 mcg
(600 UI)
15 mcg
(600 UI)
14-18 ans 15 mcg
(600 UI)
15 mcg
(600 UI)
15 mcg
(600 UI)
15 mcg
(600 UI)
19-50 ans 15 mcg
(600 UI)
15 mcg
(600 UI)
15 mcg
(600 UI)
15 mcg
(600 UI)
51-70 ans 15 mcg
(600 UI)
15 mcg
(600 UI)
>70 ans 20 mcg
(800 UI)
20 mcg
(800 UI)

* Apport suffisant (IA)

De nombreux autres pays dans le monde et certaines sociétés professionnelles ont des directives quelque peu différentes pour les apports en vitamine D [15]. Ces différences sont le résultat d’une compréhension incomplète de la biologie et des implications cliniques de la vitamine D, des objectifs différents des lignes directrices (p. études en plus des essais cliniques randomisés pour établir des recommandations [9,15]. L’Endocrine Society déclare, par exemple, que pour maintenir les taux sériques de 25(OH)D au-dessus de 75 nmol/L (30 ng/mL), les adultes pourraient avoir besoin d’au moins 37,5 à 50 mcg (1 500 à 2 000 UI)/jour de suppléments vitaminiques. D, et les enfants et les adolescents pourraient avoir besoin d’au moins 25 mcg (1 000 UI)/jour [11]. En revanche, le gouvernement du Royaume-Uni recommande des apports de 10 mcg (400 UI)/jour pour ses citoyens âgés de 4 ans et plus [16].

Sources de vitamine D

Nourriture

Peu d’aliments contiennent naturellement de la vitamine D. La chair des poissons gras (comme la truite, le saumon, le thon et le maquereau) et les huiles de foie de poisson sont parmi les meilleures sources [17,1]. L’alimentation d’un animal affecte la quantité de vitamine D dans ses tissus. Le foie de bœuf, les jaunes d’œufs et le fromage contiennent de petites quantités de vitamine D, principalement sous forme de vitamine D3 et son métabolite 25(OH)D3. Les champignons fournissent des quantités variables de vitamine D2 [17]. Certains champignons disponibles sur le marché ont été traités à la lumière UV pour augmenter leur taux de vitamine D2. En outre, la Food and Drug Administration (FDA) a approuvé la poudre de champignon traitée aux UV comme additif alimentaire à utiliser comme source de vitamine D.2 dans les produits alimentaires [18]. Des preuves très limitées suggèrent qu’il n’y a pas de différences substantielles dans la biodisponibilité de la vitamine D à partir de divers aliments [19].

Les aliments d’origine animale fournissent généralement de la vitamine D sous forme de 25(OH)D en plus de la vitamine D3. L’impact de cette forme sur le statut en vitamine D est un domaine de recherche émergent. Des études montrent que la 25(OH)D semble être environ cinq fois plus puissante que la vitamine mère pour augmenter les concentrations sériques de 25(OH)D [17,20,21]. Une étude a révélé que lorsque la teneur en 25(OH)D du bœuf, du porc, du poulet, de la dinde et des œufs est prise en compte, la quantité totale de vitamine D dans l’aliment est 2 à 18 fois plus élevée que la quantité dans la vitamine mère. seul, selon la nourriture [20].

Les aliments enrichis fournissent la plupart de la vitamine D dans les régimes américains [1,22]. Par exemple, la quasi-totalité de la production de lait aux États-Unis est volontairement enrichie d’environ 3 mcg/tasse (120 UI), généralement sous forme de vitamine D.3 [23]. Au Canada, le lait doit être enrichi de 0,88 à 1,0 mcg/100 ml (35 à 40 UI) et la quantité requise pour la margarine est d’au moins 13,25 mcg/100 g (530 UI). Les autres produits laitiers à base de lait, comme le fromage et la crème glacée, ne sont généralement pas enrichis aux États-Unis ou au Canada. Les substituts du lait végétal (comme les boissons à base de soja, d’amande ou d’avoine) sont souvent enrichis de quantités de vitamine D similaires à celles du lait de vache enrichi (environ 3 mcg [120 IU]/tasse); l’étiquette de la valeur nutritive indique la quantité réelle [24]. Les céréales pour petit-déjeuner prêtes à manger contiennent souvent de la vitamine D ajoutée, tout comme certaines marques de jus d’orange, de yogourt, de margarine et d’autres produits alimentaires.

Les États-Unis exigent l’enrichissement des préparations pour nourrissons avec 1 à 2,5 mcg/100 kcal (40 à 100 UI) de vitamine D ; 1 à 2 mcg/100 kcal (40 à 80 UI) est la quantité requise au Canada [1].

Une variété d’aliments et leurs niveaux de vitamine D par portion sont répertoriés dans le tableau 3.

Tableau 3 : Teneur en vitamine D de certains aliments [25]
Nourriture Microgrammes
(mcg) par
portion
International
Unités (UI)
par portion
Pourcentage DV*
Huile de foie de morue, 1 cuillère à soupe 34,0 1 360 170
Truite (arc-en-ciel), d’élevage, cuite, 3 onces 16.2 645 81
Saumon (sockeye), cuit, 3 onces 14.2 570 71
Champignons, blancs, crus, tranchés, exposés à la lumière UV, ½ tasse 9.2 366 46
Lait, 2% de matière grasse laitière, enrichi en vitamine D, 1 tasse 2.9 120 15
Laits de soja, d’amande et d’avoine, enrichis en vitamine D, diverses marques, 1 tasse 2,5-3,6 100-144 13-18
Céréales prêtes à manger, enrichies de 10 % de la VQ pour la vitamine D, 1 portion 2.0 80 dix
Sardines (Atlantique), en conserve à l’huile, égouttées, 2 sardines 1.2 46 6
Egguf, 1 gros, brouillé** 1.1 44 6
Foie, boeuf, braisé, 3 onces 1,0 42 5
Thon (léger), en conserve dans l’eau, égoutté, 3 onces 1,0 40 5
Fromage, cheddar, 1,5 once 0,4 17 2
Champignons, portabella, crus, en dés, ½ tasse 0,1 4 1
Poitrine de poulet, rôtie, 3 onces 0,1 4 1
Boeuf, haché, 90% maigre, grillé, 3 onces 0 1.7 0
Brocoli, cru, haché, ½ tasse 0 0 0
Carottes, crues, hachées, ½ tasse 0 0 0
Amandes, grillées à sec, 1 once 0 0 0
Pomme, grosse 0 0 0
Banane, grande 0 0 0
Riz, brun, à grains longs, cuit, 1 tasse 0 0 0
Pain de blé entier, 1 tranche 0 0 0
Lentilles, bouillies, ½ tasse 0 0 0
Graines de tournesol, grillées, ½ tasse 0 0 0
Edamame, décortiqué, cuit, ½ tasse 0 0 0

* DV = valeur quotidienne. La FDA a développé des VQ pour aider les consommateurs à comparer les teneurs en nutriments des aliments et des compléments alimentaires dans le contexte d’un régime alimentaire total. La DV pour la vitamine D est de 20 mcg (800 UI) pour les adultes et les enfants âgés de 4 ans et plus [26]. Les étiquettes doivent indiquer la teneur en vitamine D en mcg par portion et avoir la possibilité d’indiquer également la quantité en UI entre parenthèses. Les aliments fournissant 20 % ou plus de la DV sont considérés comme des sources élevées d’un nutriment, mais les aliments fournissant des pourcentages inférieurs de la DV contribuent également à une alimentation saine.
** La vitamine D est dans le jaune.

FoodData Central du Département de l’agriculture des États-Unis (USDA)avis de non-responsabilité pour les liens externes répertorie la teneur en éléments nutritifs de nombreux aliments et fournit une liste complète d’aliments contenant de la vitamine D classés par teneur en éléments nutritifs et par nom d’aliment. Cependant, FoodData Central n’inclut pas les quantités de 25(OH)D dans les aliments.

exposition au soleil

La plupart des gens dans le monde comblent au moins une partie de leurs besoins en vitamine D en s’exposant au soleil [1]. Le rayonnement UV de type B (UVB) d’une longueur d’onde d’environ 290 à 320 nanomètres pénètre dans la peau découverte et convertit le 7-déhydrocholestérol cutané en prévitamine D3, qui à son tour devient vitamine D3. La saison, l’heure de la journée, la durée de la journée, la couverture nuageuse, le smog, la teneur en mélanine de la peau et l’écran solaire font partie des facteurs qui affectent l’exposition aux rayons UV et la synthèse de la vitamine D. Les personnes âgées et les personnes à la peau foncée sont moins capables de produire de la vitamine D à partir du soleil [1]. Le rayonnement UVB ne pénètre pas le verre, donc l’exposition au soleil à l’intérieur par une fenêtre ne produit pas de vitamine D [27].

Les facteurs qui affectent l’exposition aux rayons UV, la réactivité individuelle et les incertitudes concernant la quantité d’exposition au soleil nécessaire pour maintenir des niveaux adéquats de vitamine D rendent difficile la fourniture de lignes directrices sur la quantité d’exposition au soleil requise pour une synthèse suffisante de la vitamine D. [15,28]. Certains organismes d’experts et chercheurs sur la vitamine D suggèrent, par exemple, qu’environ 5 à 30 minutes d’exposition au soleil, en particulier entre 10 h et 16 h, soit quotidiennement, soit au moins deux fois par semaine sur le visage, les bras, les mains et les jambes sans crème solaire conduit généralement à une synthèse suffisante de vitamine D [13,15,28]. L’utilisation modérée de lits de bronzage commerciaux qui émettent de 2 % à 6 % de rayonnement UVB est également efficace [13,29].

Mais malgré l’importance du soleil pour la synthèse de la vitamine D, il est prudent de limiter l’exposition de la peau au soleil et aux rayons UV des lits de bronzage. [28]. Les rayons UV sont cancérigènes et l’exposition aux UV est la cause la plus évitable de cancer de la peau. Les agences fédérales et les organisations nationales conseillent de prendre des mesures photoprotectrices pour réduire le risque de cancer de la peau, y compris l’utilisation d’un écran solaire avec un facteur de protection solaire (FPS) de 15 ou plus, chaque fois que les gens sont exposés au soleil [28,30]. Les écrans solaires avec un FPS de 8 ou plus semblent bloquer les rayons UV producteurs de vitamine D. Dans la pratique, cependant, les gens n’appliquent généralement pas des quantités suffisantes de crème solaire, ne couvrent pas toute la peau exposée au soleil ou ne réappliquent pas régulièrement la crème solaire. Leur peau synthétise probablement de la vitamine D, même avec des quantités de crème solaire généralement appliquées [1,28].

Compléments alimentaires

Les compléments alimentaires peuvent contenir des vitamines D2 ou D3. Vitamine D2 est fabriqué en utilisant l’irradiation UV de l’ergostérol dans la levure et de la vitamine D3 est produit avec l’irradiation du 7-déhydrocholestérol à partir de la lanoline et la conversion chimique du cholestérol [13]. Les deux formes augmentent les taux sériques de 25(OH)D et semblent avoir une capacité équivalente à guérir le rachitisme [4]. De plus, la plupart des étapes du métabolisme et des actions des vitamines D2 et D3 sont identiques. Cependant, la plupart des preuves indiquent que la vitamine D3 augmente les taux sériques de 25(OH)D dans une plus grande mesure et maintient ces taux plus élevés plus longtemps que la vitamine D2, même si les deux formes sont bien absorbées dans l’intestin [31-34].

Certaines études ont utilisé des compléments alimentaires contenant le 25(OH)D3 forme de vitamine D. Par dose équivalente en microgrammes, 25(OH)D3 est trois à cinq fois plus puissant que la vitamine D3 [35,36]. Cependant, pas de 25(OH)D3 les compléments alimentaires semblent être disponibles pour les consommateurs sur le marché américain en ce moment [37].

Apports et statut en vitamine D

La plupart des gens aux États-Unis consomment moins que les quantités recommandées de vitamine D. Une analyse des données de la National Health and Nutrition Examination Survey (NHANES) 2015-2016 a révélé que les apports quotidiens moyens en vitamine D provenant des aliments et des boissons étaient de 5,1 mcg (204 UI ) chez les hommes, 4,2 mcg (168 UI) chez les femmes et 4,9 mcg (196 UI) chez les enfants âgés de 2 à 19 ans [38]. En fait, les données NHANES 2013-2016 ont montré que 92 % des hommes, plus de 97 % des femmes et 94 % des personnes âgées de 1 an et plus ont ingéré moins que l’EAR de 10 mcg (400 UI) de vitamine D provenant des aliments et breuvages [39].

L’analyse des données 2015-2016 a également montré que 28% de toutes les personnes âgées de 2 ans et plus aux États-Unis ont pris un complément alimentaire contenant de la vitamine D [38]. De plus, 26 % des participants âgés de 2 à 5 ans et 14 % de ceux âgés de 6 à 11 ans ont pris des suppléments ; les taux augmentaient avec l’âge, passant de 10 % des 12 à 19 ans à 49 % des hommes et 59 % des femmes de 60 ans et plus. Les apports totaux en vitamine D étaient trois fois plus élevés avec l’utilisation de suppléments qu’avec le régime seul ; l’apport moyen provenant des aliments et des boissons seuls pour les personnes âgées de 2 ans et plus était de 4,8 mcg (192 UI) mais augmentait à 19,9 mcg (796 UI) lorsque les compléments alimentaires étaient inclus.

Certaines personnes prennent de très fortes doses de suppléments de vitamine D. En 2013-2014, on estime que 3,2 % de la population adulte américaine a pris des suppléments contenant 100 mcg (4 000 UI) ou plus de vitamine D [40].

On pourrait s’attendre à ce qu’une grande partie de la population américaine présente une carence en vitamine D sur la base des apports en vitamine D provenant des aliments, des boissons et même des compléments alimentaires. Cependant, comparer les apports en vitamine D aux taux sériques de 25(OH)D est problématique. L’une des raisons est que l’exposition au soleil affecte le statut en vitamine D, de sorte que les taux sériques de 25(OH)D sont généralement plus élevés que ce qui serait prédit sur la base des seuls apports alimentaires en vitamine D. [1]. Une autre raison est que les aliments d’origine animale contiennent du 25(OH)D. Cette forme de vitamine D n’est pas incluse dans les enquêtes sur l’apport et est considérablement plus puissante que les vitamines D2 ou D3 à l’augmentation des taux sériques de 25(OH)D [41].

Une analyse des données NHANES 2011-2014 sur les taux sériques de 25(OH)D a révélé que la plupart des personnes âgées de 1 an et plus aux États-Unis avaient des apports suffisants en vitamine D selon les seuils FNB. [42]. Cependant, 18 % présentaient un risque d’insuffisance (niveaux de 30 à 49 nmol/L [12–19.6 ng/mL]), et 5 % étaient à risque de carence (taux inférieurs à 30 nmol/L [12 ng/mL]). Quatre pour cent avaient des niveaux supérieurs à 125 nmol/L (50 ng/mL). Les proportions à risque de carence étaient les plus faibles chez les enfants âgés de 1 à 5 ans (0,5 %), culminaient à 7,6 % chez les adultes âgés de 20 à 39 ans et tombaient à 2,9 % chez les adultes âgés de 60 ans et plus ; les tendances étaient similaires pour les risques d’insuffisance. Les taux de carence variaient selon la race et l’origine ethnique : 17,5 % des Noirs non hispaniques étaient à risque de carence en vitamine D, tout comme 7,6 % des Asiatiques non hispaniques, 5,9 % des Hispaniques et 2,1 % des Blancs non hispaniques. Encore une fois, la tendance était similaire pour le risque d’insuffisance. Le statut en vitamine D aux États-Unis est resté stable au cours de la décennie entre 2003-2004 et 2013-2014.

Carence en vitamine D

Les gens peuvent développer une carence en vitamine D lorsque les apports habituels sont inférieurs aux niveaux recommandés au fil du temps, l’exposition au soleil est limitée, les reins ne peuvent pas convertir le 25(OH)D en sa forme active ou l’absorption de la vitamine D par le tube digestif est insuffisante. Les régimes pauvres en vitamine D sont plus fréquents chez les personnes allergiques au lait ou intolérantes au lactose et celles qui suivent un régime ovo-végétarien ou végétalien [1].

Chez les enfants, la carence en vitamine D se manifeste par le rachitisme, une maladie caractérisée par une incapacité du tissu osseux à se minéraliser correctement, entraînant des os mous et des déformations du squelette [43]. En plus des déformations osseuses et de la douleur, le rachitisme sévère peut entraîner un retard de croissance, un retard de développement, des crises hypocalcémiques, des spasmes tétaniques, une cardiomyopathie et des anomalies dentaires [44,45].

L’allaitement exclusif prolongé sans supplémentation en vitamine D peut provoquer le rachitisme chez les nourrissons et, aux États-Unis, le rachitisme est plus fréquent chez les nourrissons et les enfants noirs allaités. [46]. Dans un comté du Minnesota, le taux d’incidence du rachitisme chez les enfants de moins de 3 ans au cours de la décennie commençant en 2000 était de 24,1 pour 100 000 [47]. Le rachitisme s’est produit principalement chez les enfants noirs qui ont été allaités plus longtemps, sont nés avec un faible poids à la naissance, pesaient moins et étaient plus petits que les autres enfants. Le taux d’incidence du rachitisme chez les nourrissons et les enfants (de moins de 7 ans) vus par 2 325 pédiatres partout au Canada était de 2,9 pour 100 000 en 2002-2004, et presque tous les patients atteints de rachitisme avaient été allaités. [48].

L’enrichissement du lait (une bonne source de calcium) et d’autres aliments de base, tels que les céréales pour petit-déjeuner et la margarine, avec de la vitamine D à partir des années 1930 et l’utilisation d’huile de foie de morue ont rendu le rachitisme rare aux États-Unis. [28,49]. Cependant, l’incidence du rachitisme augmente dans le monde, même aux États-Unis et en Europe, en particulier chez les immigrants des pays d’Afrique, du Moyen-Orient et d’Asie. [50]. Les explications possibles de cette augmentation incluent les différences génétiques dans le métabolisme de la vitamine D, les préférences alimentaires et les comportements qui conduisent à une exposition moindre au soleil. [44,45].

Chez les adultes et les adolescents, une carence en vitamine D peut entraîner une ostéomalacie, dans laquelle l’os existant est incomplètement ou mal minéralisé pendant le processus de remodelage, entraînant une faiblesse des os [45]. Les signes et symptômes de l’ostéomalacie sont similaires à ceux du rachitisme et comprennent des déformations et des douleurs osseuses, des crises hypocalcémiques, des spasmes tétaniques et des anomalies dentaires [44].

Le dépistage du statut en vitamine D devient une partie plus courante des analyses sanguines de laboratoire de routine ordonnées par les médecins de soins primaires, indépendamment de toute indication pour cette pratique [6,51-53]. Aucune étude n’a examiné si un tel dépistage de la carence en vitamine D améliore les résultats pour la santé. [54]. Le groupe de travail américain sur les services de prévention (USPSTF) a trouvé des preuves insuffisantes pour évaluer les avantages et les inconvénients du dépistage de la carence en vitamine D chez les adultes asymptomatiques [6]. Il a ajouté qu’aucune organisation professionnelle nationale ne recommande le dépistage de la carence en vitamine D dans la population.

Groupes à risque de carence en vitamine D

Il est difficile d’obtenir suffisamment de vitamine D à partir de sources alimentaires naturelles (non enrichies). Pour de nombreuses personnes, la consommation d’aliments enrichis en vitamine D et l’exposition au soleil sont essentielles pour maintenir un statut sain en vitamine D. Cependant, certains groupes peuvent avoir besoin de compléments alimentaires pour répondre à leurs besoins en vitamine D. Les groupes suivants sont parmi les plus susceptibles d’avoir un statut en vitamine D inadéquat.

Nourrissons allaités

La consommation de lait maternel seul ne permet généralement pas aux nourrissons de répondre aux besoins en vitamine D, car il fournit moins de 0,6 à 2,0 mcg/L (25 à 78 UI/L) [1,55,56]. La teneur en vitamine D du lait maternel est liée au statut en vitamine D de la mère ; des études suggèrent que le lait maternel des mères qui prennent des suppléments quotidiens contenant au moins 50 mcg (2 000 UI) de vitamine D3 ont des niveaux plus élevés de nutriments [56,57].

Bien que l’exposition aux UVB puisse produire de la vitamine D chez les nourrissons, l’American Academy of Pediatrics (AAP) conseille aux parents de garder les nourrissons de moins de 6 mois à l’abri de la lumière directe du soleil, de les habiller avec des vêtements de protection et des chapeaux, et d’appliquer un écran solaire sur de petites zones de peau exposée quand l’exposition au soleil est inévitable [58]. L’AAP recommande des suppléments de vitamine D de 10 mcg (400 UI)/jour pour les nourrissons exclusivement et partiellement allaités, commençant peu de temps après la naissance et jusqu’à ce qu’ils soient sevrés et consomment au moins 1 000 ml/jour de préparation enrichie en vitamine D ou de lait entier [56]. L’AAP recommande également 10 mcg (400 UI)/jour de supplément de vitamine D pour tous les nourrissons qui ne sont pas allaités et qui ingèrent moins de 1 000 ml/jour de préparations lactées ou de lait enrichis en vitamine D. Une analyse des données de la NHANES 2009-2016 a révélé que seulement 20,5 % des nourrissons allaités et 31,1 % des nourrissons non allaités avaient ingéré ces quantités recommandées de suppléments. [59].

Personnes âgées

Les personnes âgées courent un risque accru de développer une insuffisance en vitamine D, en partie parce que la capacité de la peau à synthétiser la vitamine D diminue avec l’âge [1,60]. De plus, les personnes âgées sont susceptibles de passer plus de temps que les plus jeunes à l’intérieur, et elles peuvent avoir des apports alimentaires insuffisants en vitamine [1].

Personnes ayant une exposition limitée au soleil

Individus confinés à la maison ; les personnes qui portent des robes longues, des robes ou des couvre-chefs pour des raisons religieuses ; et les personnes dont les professions limitent l’exposition au soleil font partie des groupes qui ont peu de chances d’obtenir des quantités suffisantes de vitamine D à partir du soleil [61]. L’utilisation d’un écran solaire limite également la synthèse de vitamine D à partir du soleil. Cependant, comme l’étendue et la fréquence d’utilisation de la crème solaire sont inconnues, le rôle que la crème solaire peut jouer dans la réduction de la synthèse de la vitamine D n’est pas clair. [1].

Les personnes à la peau foncée

De plus grandes quantités de mélanine pigmentaire dans la couche épidermique de la peau donnent une peau plus foncée et réduisent la capacité de la peau à produire de la vitamine D à partir du soleil [1]. Les Noirs américains, par exemple, ont généralement des taux sériques de 25(OH)D inférieurs à ceux des Blancs américains. Cependant, il n’est pas clair si ces niveaux inférieurs chez les personnes à peau foncée ont des conséquences importantes sur la santé [14]. Les personnes d’ascendance afro-américaine, par exemple, ont des taux de fractures osseuses et d’ostéoporose inférieurs à ceux des Blancs (voir la section ci-dessous sur la santé des os et l’ostéoporose).

Les personnes atteintes d’affections qui limitent l’absorption des graisses

Parce que la vitamine D est liposoluble, son absorption dépend de la capacité de l’intestin à absorber les graisses alimentaires [4]. La malabsorption des graisses est associée à des conditions médicales qui incluent certaines formes de maladie du foie, la mucoviscidose, la maladie cœliaque, la maladie de Crohn et la colite ulcéreuse [1,62]. En plus d’avoir un risque accru de carence en vitamine D, les personnes atteintes de ces maladies peuvent ne pas manger certains aliments, tels que les produits laitiers (dont beaucoup sont enrichis en vitamine D), ou ne manger que de petites quantités de ces aliments. Les personnes qui ont des difficultés à absorber les graisses alimentaires pourraient donc avoir besoin d’une supplémentation en vitamine D [62].

Les personnes obèses ou ayant subi un pontage gastrique

Les personnes ayant un indice de masse corporelle (IMC) de 30 ou plus ont des taux sériques de 25(OH)D inférieurs à ceux des personnes non obèses. L’obésité n’affecte pas la capacité de la peau à synthétiser la vitamine D. Cependant, de plus grandes quantités de graisse sous-cutanée séquestre plus de vitamine [1]. Les personnes obèses pourraient avoir besoin d’un apport plus important en vitamine D pour atteindre des niveaux de 25(OH)D similaires à ceux des personnes de poids normal [1,63,64].

Les personnes obèses qui ont subi un pontage gastrique peuvent également devenir carencées en vitamine D. Dans cette procédure, une partie de la partie supérieure de l’intestin grêle, où la vitamine D est absorbée, est contournée, et la vitamine D qui est mobilisée dans la circulation sanguine à partir des réserves de graisse peut ne pas augmenter la 25(OH)D à des niveaux adéquats au fil du temps. [65,66]. Divers groupes d’experts, dont l’American Association of Metabolic and Bariatric Surgery, The Obesity Society et la British Obesity and Metabolic Surgery Society, ont élaboré des lignes directrices sur le dépistage, la surveillance et le remplacement de la vitamine D avant et après la chirurgie bariatrique. [65,67]

Vitamine D et santé

Le comité FNB qui a établi les ANREF pour la vitamine D a constaté que les preuves étaient insuffisantes ou trop contradictoires pour conclure que la vitamine avait un effet sur une longue liste de résultats potentiels pour la santé (par exemple, sur la résistance aux maladies chroniques ou les mesures fonctionnelles), à l’exception des mesures liés à la santé des os. De même, dans une revue des données de près de 250 études publiées entre 2009 et 2013, l’Agence pour la recherche et la qualité des soins de santé a conclu qu’aucune relation ne pouvait être fermement établie entre la vitamine D et les résultats pour la santé autres que la santé osseuse. [68]. Cependant, étant donné que des recherches ont été menées sur la vitamine D et de nombreux effets sur la santé, cette section se concentre sur sept maladies, affections et interventions dans lesquelles la vitamine D pourrait être impliquée : la santé des os et l’ostéoporose, le cancer, les maladies cardiovasculaires (MCV), la dépression, les maladies multiples. la sclérose en plaques (SEP), le diabète de type 2 et la perte de poids.

La plupart des études décrites dans cette section ont mesuré les taux sériques de 25(OH)D en utilisant diverses méthodes qui n’étaient pas standardisées en les comparant aux meilleures méthodes. Use of unstandardized 25(OH)D measures can raise questions about the accuracy of the results and about the validity of conclusions drawn from studies that use such measures and, especially, from meta-analyses that pool data from many studies that use different unstandardized measures [5,9,69]. More information about assay standardization is available from the Vitamin D Standardization Program webpage.

Bone health and osteoporosis

Bone is constantly being remodeled. However, as people age—and particularly in women during menopause—bone breakdown rates overtake rates of bone building. Over time, bone density can decline, and osteoporosis can eventually develop [70].

More than 53 million adults in the United States have or are at risk of developing osteoporosis, which is characterized by low bone mass and structural deterioration of bone tissue that increases bone fragility and the risk of bone fractures [71]. About 2.3 million osteoporotic fractures occurred in the United States in 2015 [72]. Osteoporosis is, in part, a long-term effect of calcium and/or vitamin D insufficiency, in contrast to rickets and osteomalacia, which result from vitamin D deficiency. Osteoporosis is most often associated with inadequate calcium intakes, but insufficient vitamin D intakes contribute to osteoporosis by reducing calcium absorption [1].

Bone health also depends on support from the surrounding muscles to assist with balance and postural sway and thereby reduce the risk of falling. Vitamin D is also needed for the normal development and growth of muscle fibers. In addition, inadequate vitamin D levels can adversely affect muscle strength and lead to muscle weakness and pain (myopathy) [1].

Most trials of the effects of vitamin D supplements on bone health also included calcium supplements, so isolating the effects of each nutrient is difficult. In addition, studies provided different amounts of nutrients and used different dosing schedules.

Clinical trial evidence on older adults

Among postmenopausal women and older men, many clinical trials have shown that supplements of both vitamin D and calcium result in small increases in bone mineral density throughout the skeleton [1,73]. They also help reduce fracture rates in institutionalized older people. However, the evidence on the impact of vitamin D and calcium supplements on fractures in community-dwelling individuals is inconsistent.

The USPSTF evaluated 11 randomized clinical trials of vitamin D and/or calcium supplementation in a total of 51,419 healthy, community-dwelling adults aged 50 years and older who did not have osteoporosis, vitamin D deficiency, or prior fractures [74,75]. It concluded that the current evidence was insufficient to evaluate the benefits and harms of supplementation to prevent fractures. In addition, the USPSTF recommended against supplementation with 10 mcg (400 IU) or less of vitamin D and 1,000 mg or less of calcium to prevent fractures in this population, but it could not determine the balance of benefits and harms from higher doses.

The USPSTF also reviewed the seven published studies on the effects of vitamin D supplementation (two of them also included calcium supplementation) on the risk of falls in community-dwelling adults aged 65 years or older who did not have osteoporosis or vitamin D deficiency. It concluded « with moderate certainty » that vitamin D supplementation does not reduce the numbers of falls or injuries, such as fractures, resulting from falls [76,76]. Another recent systematic review also found that vitamin D and calcium supplements had no beneficial effects on fractures, falls, or bone mineral density [78,79]. In contrast, a meta-analysis of 6 trials in 49,282 older adults found that daily vitamin D (10 or 20 mcg [400 IU or 800 IU]/day) and calcium (800 or 1,200 mg/day) supplementation for a mean of 5.9 years reduced the risk of any fracture by 6% and of hip fracture by 16% [80].

One systematic review and meta-analysis of 11 randomized, controlled trials published through 2018 of vitamin D supplementation alone (10–20 mcg [400–800 IU]/day or more at least every week or as rarely as once a year) for 9 months to 5 years found that the supplements provided no protection from fractures in 34,243 older adults [80].

Vitamin D supplements for bone health in minority populations

Bone mineral density, bone mass, and fracture risk are correlated with serum 25(OH)D levels in White Americans and Mexican Americans, but not in Black Americans [14,81]. Factors such as adiposity, skin pigmentation, vitamin D binding protein polymorphisms, and genetics contribute to differences in 25(OH)D levels between Black and White Americans.

One clinical trial randomized 260 Black women aged 60 years and older (mean age 68.2 years) to receive 60 to 120 mcg (2,400 to 4,800 IU) per day vitamin D3 supplementation to maintain serum 25(OH)D levels above 75 nmol/L (30 ng/mL) for 3 years [82]. The results showed no association between 25(OH)D levels or vitamin D dose and the risk of falling in the 184 participants who completed the study. In fact, Black Americans might have a greater risk than White Americans of falls and fractures with daily vitamin D intakes of 50 mcg (2,000 IU) or more [14]. Furthermore, the bone health of older Black American women does not appear to benefit from raising serum 25(OH)D levels beyond 50 nmol/L (20 ng/mL) [82].

Vitamin D supplements and muscle function

Studies examining the effects of supplemental vitamin D on muscle strength and on rate of decline in muscle function have had inconsistent results [54]. One recent clinical trial, for example, randomized 78 frail and near-frail adults aged 65 years and older to receive 20 mcg (800 IU) vitamin D3, 10 mcg 25(OH)D, or placebo daily for 6 months. The groups showed no significant differences in measures of muscle strength or performance [83]. Another study randomized 100 community-dwelling men and women aged 60 years and older (most were White) with serum 25(OH)D levels of 50 nmol/L (20 ng/ml) or less to 800 IU vitamin D3 or placebo for 1 year [84]. Participants in the treatment group whose serum 25(OH)D level was less than 70 nmol/L (28 ng/ml) after 4 months received an additional 800 IU/day vitamin D3. Despite increasing serum 25(OH)D levels to an average of more than 80 nmol/L (32 ng/ml), vitamin D supplementation did not affect lower-extremity power, strength, or lean mass.

Conclusions about vitamin D supplements and bone health

All adults should consume recommended amounts of vitamin D and calcium from foods and supplements if needed. Older women and men should consult their healthcare providers about their needs for both nutrients as part of an overall plan to maintain bone health and to prevent or treat osteoporosis.

Cancer

Laboratory and animal studies suggest that vitamin D might inhibit carcinogenesis and slow tumor progression by, for example, promoting cell differentiation and inhibiting metastasis. Vitamin D might also have anti-inflammatory, immunomodulatory, proapoptotic, and antiangiogenic effects [1,85]. Observational studies and clinical trials provide mixed evidence on whether vitamin D intakes or serum levels affect cancer incidence, progression, or mortality risk.

Total cancer incidence and mortality

Some observational studies show associations between low serum levels of 25(OH)D and increased risks of cancer incidence and death. In a meta-analysis of 16 prospective cohort studies in a total of 137,567 participants who had 8,345 diagnoses of cancer, 5,755 participants died from cancer [86]. A 50 nmol/L (20 ng/mL) increase in 25(OH)D levels was associated with an 11% reduction in total cancer incidence rates and, in women but not men, a 24% reduction in cancer mortality rates. A meta-analysis of prospective studies that evaluated the association between serum 25(OH)D levels and cancer incidence (8 studies) or cancer mortality (16 studies) found that cancer risk decreased by 7% and cancer mortality rates decreased by 2% with each 20 nmol/L (8 ng/mL) increase in serum 25(OH)D levels [87]. Importantly, not all observational studies found higher vitamin D status to be beneficial, and the studies varied considerably in study populations, baseline comorbidities, and measurement of vitamin D levels.

Clinical trial evidence provides some support for the observational findings. For example, three meta-analyses of clinical trial evidence found that vitamin D supplementation does not affect cancer incidence but does significantly reduce total cancer mortality rates by 12–13% [88-90]. In the most recent meta-analysis, 10 randomized clinical trials (including the Vitamin D and Omega-3 Trial [VITAL] trial described below) that included 6,537 cancer cases provided 10 to 50 mcg (400 to 2,000 IU) vitamin D3 daily (six trials) or 500 mcg (20,000 IU)/week to 12,500 mcg (500,000 IU)/year boluses of vitamin D3 (four trials) [89]. The study reports included 3–10 years of followup data. The vitamin D supplements were associated with serum 25(OH)D levels of 54 to 135 nmol/L (21.6 to 54 ng/mL). Vitamin D supplementation reduced cancer mortality rates by 13%, and most of the benefit occurred with daily supplementation.

The largest clinical trial, VITAL, to investigate the effects of vitamin D supplementation on the primary prevention of cancer in the general population gave 50 mcg (2,000 IU)/day vitamin D3 supplements with or without 1,000 mg/day marine omega-3 fatty acids or a placebo for a median of 5.3 years [91]. The study included 25,871 men aged 50 years and older and women aged 55 years and older who had no history of cancer, and most had adequate serum 25(OH)D levels at baseline. Rates of breast, prostate, and colorectal cancer did not differ significantly between the vitamin D and placebo groups. However, normal-weight participants had greater reductions in cancer incidence and mortality rates than those who were overweight or obese.

A few studies have examined the effect of vitamin D supplementation on specific cancers. Below are brief descriptions of studies of vitamin D and its association with, or effect on, breast, colorectal, lung, pancreatic, and prostate cancers.

Breast cancer

Some observational studies support an inverse association between 25(OH)D levels and breast cancer risk and mortality, but others do not [92-95]. The Women’s Health Initiative clinical trial randomized 36,282 postmenopausal women to receive 400 IU vitamin D3 plus 1,000 mg calcium daily or a placebo for a mean of 7 years [96]. The vitamin D3 and calcium supplements did not reduce breast cancer incidence, and 25(OH)D levels at the start of the study were not associated with breast cancer risk [97].

In a subsequent investigation for 4.9 years after the study’s end, women who had taken the vitamin D and calcium supplements (many of whom continued to take them) had an 18% lower risk of in situ (noninvasive) breast cancer [98]. However, women with vitamin D intakes higher than 15 mcg (600 IU)/day at the start of the trial and who received the supplements experienced a 28% increased risk of invasive (but not in situ) breast cancer.

Colorectal cancer

A large case-control study included 5,706 individuals who developed colorectal cancer and whose 25(OH)D levels were assessed a median of 5.5 years from blood draw to cancer diagnosis and 7,105 matched controls [99]. The results showed an association between 25(OH)D levels lower than 30 nmol/L (12 ng/mL) and a 31% higher colorectal cancer risk. Levels of 75 to less than 87.5 nmol/L (30 to less than 35 ng/mL) and 87.5 to less than 100 nmol/L (35 to less than 40 ng/mL) were associated with a 19% and 27% lower risk, respectively. The association was substantially stronger in women.

In the Women’s Health Initiative clinical trial (described above), vitamin D3 and calcium supplements had no effect on rates of colorectal cancer. In a subsequent investigation for 4.9 years after the study’s end, women who had taken the vitamin D and calcium supplements (many of whom continued to take them) still had the same colorectal cancer risk as those who received placebo [98].

Another study included 2,259 healthy individuals aged 45 to 75 years who had had one or more serrated polyps (precursor lesions to colorectal cancer) that had been removed [100]. These participants were randomized to take 25 mcg (1,000 IU) vitamin D3, 1,200 mg calcium, both supplements, or a placebo daily for 3–5 years, followed by an additional 3–5 years of observation after participants stopped the treatment. Vitamin D alone did not significantly affect the development of new serrated polyps, but the combination of vitamin D with calcium increased the risk almost fourfold. The VITAL trial found no association between vitamin D supplementation and the risk of colorectal adenomas or serrated polyps [101].

Lung cancer

A study of cohorts that included 5,313 participants who developed lung cancer and 5,313 matched controls found no association between serum 25(OH)D levels and risk of subsequent lung cancer, even when the investigators analyzed the data by sex, age, race and ethnicity, and smoking status [102].

Pancreatic cancer

One study comparing 738 men who developed pancreatic cancer to 738 matched controls found no relationship between serum 25(OH)D levels and risk of pancreatic cancer [103]. Another study that compared 200 male smokers in Finland with pancreatic cancer to 400 matched controls found that participants in the highest quintile of 25(OH)D levels (more than 65.5 nmol/L [26.2 ng/mL]) had a threefold greater risk of developing pancreatic cancer over 16.7 years than those in the lowest quintile (less than 32 nmol/L [12.8 ng/mL]) [104]. An investigation that pooled data from 10 studies of cancer in 12,205 men and women found that concentrations of 25(OH)D greater than 75 nmol/L (30 ng/mL) but less than 100 nmol/L (40 ng/mL) did not reduce the risk of pancreatic cancer. However, the results did show an increased risk of pancreatic cancer with 25(OH)D levels of 100 nmol/L (40 ng/mL) or above [105].

Prostate cancer

Research to date provides mixed evidence on whether levels of 25(OH)D are associated with the development of prostate cancer. Several studies published in 2014 suggested that high levels of 25(OH)D might increase the risk of prostate cancer. For example, a meta-analysis of 21 studies that included 11,941 men with prostate cancer and 13,870 controls found a 17% higher risk of prostate cancer for participants with higher levels of 25(OH)D [106]. What constituted a « higher » level varied by study but was typically at least 75 nmol/L (30 ng/mL). In a cohort of 4,733 men, of which 1,731 had prostate cancer, those with 25(OH)D levels of 45–70 nmol/L (18–28 ng/mL) had a significantly lower risk of the disease than men with either lower or higher values [107]. This U-shaped association was most pronounced for men with the most aggressive forms of prostate cancer. A case-control analysis of 1,695 cases of prostate cancer and 1,682 controls found no associations between 25(OH)D levels and prostate cancer risk [108]. However, higher serum 25(OH)D levels (at a cut point of 75 nmol/L [30 ng/mL]) were linked to a modestly higher risk of slow-growth prostate cancer and a more substantial lower risk of aggressive disease.

Since 2014, however, several published studies and meta-analyses have found no relationship between 25(OH)D levels and prostate cancer risk [109,110]. For example, an analysis was conducted of 19 prospective studies that provided data on prediagnostic levels of 25(OH)D for 13,462 men who developed prostate cancer and 20,261 control participants [111]. Vitamin D deficiency or insufficiency did not increase the risk of prostate cancer, and higher 25(OH)D concentrations were not associated with a lower risk.

Several studies have examined whether levels of 25(OH)D in men with prostate cancer are associated with a lower risk of death from the disease or from any cause. One study included 1,119 men treated for prostate cancer whose plasma 25(OH)D levels were measured 4.9 to 8.6 years after their diagnosis. Among the 198 participants who died (41 deaths were due to prostate cancer), 25(OH)D levels were not associated with risk of death from prostate cancer or any cause [112]. However, a meta-analysis of 7 cohort studies that included 7,808 men with prostate cancer found higher 25(OH)D levels to be significantly associated with lower mortality rates from prostate cancer or any other cause [113]. A dose-response analysis found that each 20 nmol/L [8 ng/mL] increase in 25(OH)D was associated with a 9% lower risk of both all-cause and prostate cancer-specific mortality.

For men with prostate cancer, whether vitamin D supplementation lengthens cancer-related survival is not clear. A meta-analysis of 3 randomized controlled trials in 1,273 men with prostate cancer found no significant differences in total mortality rates between those receiving vitamin D supplementation (from 10 mcg [400 IU]/day for 28 days to 45 mcg [1,800 IU] given in three doses total at 2-week intervals) and those receiving a placebo [114].

Conclusions about vitamin D and cancer

The USPSTF stated that, due to insufficient evidence, it was unable to assess the balance of benefits and harms of supplemental vitamin D to prevent cancer [115]. Taken together, studies to date do not indicate that vitamin D with or without calcium supplementation reduces the incidence of cancer, but adequate or higher 25(OH)D levels might reduce cancer mortality rates. Further research is needed to determine whether vitamin D inadequacy increases cancer risk, whether greater exposure to the nutrient can prevent cancer, and whether some individuals could have an increased risk of cancer because of their vitamin D status over time.

Cardiovascular disease

Vitamin D helps regulate the renin-angiotensin-aldosterone system (and thereby blood pressure), vascular cell growth, and inflammatory and fibrotic pathways [116]. Vitamin D deficiency is associated with vascular dysfunction, arterial stiffening, left ventricular hypertrophy, and hyperlipidemia [117]. For these reasons, vitamin D has been linked to heart health and risk of CVD.

Observational studies support an association between higher serum 25(OH)D levels and a lower risk of CVD incidence and mortality. For example, a meta-analysis included 34 observational studies that followed 180,667 participants (mean age greater than 50 years) for 1.3 to more than 32 years. The results showed that baseline serum 25(OH)D levels were inversely associated with total number of CVD events (including myocardial infarction, ischemic heart disease, heart failure, and stroke) and mortality risk [118]. Overall, the risk of CVD events was 10% lower for each 25 nmol/L (10 ng/mL) increase in serum 25(OH)D.

Another large observational study that followed 247,574 adults from Denmark for 0–7 years found that levels of 25(OH)D that were low (about 12.5 nmol/L [5 ng/mL]) and high (about 125 nmol/L [50 ng/mL]) were associated with a greater risk of mortality from CVD, stroke, and acute myocardial infarction [119]. Other meta-analyses of prospective studies have found associations between lower vitamin D status measured by serum 25(OH)D levels or vitamin D intakes and an increased risk of ischemic stroke, ischemic heart disease, myocardial infarction, and early death [120,121].

In contrast to the observational studies, clinical trials have provided little support for the hypothesis that supplemental vitamin D reduces the risk of CVD or CVD mortality. For example, a 3-year trial in New Zealand randomized 5,110 adults (mean age 65.9 years) to a single dose of 5,000 mcg (200,000 IU) vitamin D3 followed by 2,500 mcg (100,000 IU) each month or a placebo for a median of 3.3 years [122]. Vitamin D supplementation had no effect on the incidence rate of myocardial infarction, angina, heart failure, arrhythmia, arteriosclerosis, stroke, venous thrombosis, or death from CVD. Similarly, the VITAL clinical trial described above found that vitamin D supplements did not significantly decrease rates of heart attacks, strokes, coronary revascularization, or deaths from cardiovascular causes [91]. Moreover, the effects did not vary by baseline serum 25(OH)D levels or whether participants took the trial’s omega-3 supplement in addition to vitamin D.

However, another clinical trial designed to investigate bone fracture risk found that 800 IU/day vitamin D3 (with or without calcium) or a placebo in 5,292 adults aged 70 years and older for a median of 6.2 years offered protection from cardiac failure, but not myocardial infarction or stroke [123].

High serum cholesterol levels and hypertension are two of the main risk factors for CVD. The data on supplemental vitamin D and cholesterol levels are mixed, as shown in one meta-analysis of 41 clinical trials in a total of 3,434 participants (mean age 55 years). The results of this analysis showed that 0.5 mcg (20 IU) to 214 mcg (8,570 IU)/day vitamin D supplementation (mean of 2,795 IU) for 6 weeks to 3 years reduced serum total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels, but not high-density lipoprotein cholesterol levels [124].

Studies of the effects of vitamin D supplements on hypertension have also had mixed findings. In one meta-analysis of 46 clinical trials that included 4,541 participants, vitamin D supplements (typically 40 mcg [1,600 IU]/day or less) for a minimum of 4 weeks had no significant effects on systolic or diastolic blood pressure [125]. In contrast, another meta-analysis of 30 clinical trials in 4,744 participants (mean age 54.5 years) that administered 5 mcg (200 IU) to 300 mcg (12,000 IU)/day vitamin D3 for a mean of 5.6 months showed that more than 20 mcg (800 IU)/day significantly reduced systolic and diastolic blood pressure in normal-weight participants who had hypertension [126]. However, more than 20 mcg (800 IU)/day vitamin D3, when taken with calcium supplements, significantly increased blood pressure in overweight and obese participants. Another meta-analysis of genetic studies in 146,581 participants (primarily adults) found that a low vitamin D status increased blood pressure and hypertension risk in people with genetic variants associated with low endogenous production of 25(OH)D [127].

Overall, clinical trials show that vitamin D supplementation does not reduce CVD risk, even for people with low 25(OH)D status (below 20 nmol/L [12 ng/mL]) at baseline [91,122].

Depression

Vitamin D is involved in various brain processes, and vitamin D receptors are present on neurons and glia in areas of the brain thought to be involved in the pathophysiology of depression [128].

A systematic review and meta-analysis of 14 observational studies that included a total of 31,424 adults (mean age ranging from 27.5 to 77 years) found an association between deficient or low levels of 25(OH)D and depression [128].

Clinical trials, however, do not support these findings. For example, a meta-analysis of 9 trials with a total of 4,923 adult participants diagnosed with depression or depressive symptoms found no significant reduction in symptoms after supplementation with vitamin D [129]. The trials administered different amounts of vitamin D (ranging from 10 mcg [400 IU]/day to 1,000 mcg [40,000 IU]/week). They also had different study durations (5 days to 5 years), mean participant ages (range, 22 years to 75 years), and baseline 25(OH)D levels; furthermore, some but not all studies administered concurrent antidepressant medications.

Three trials conducted since that meta-analysis also found no effect of vitamin D supplementation on depressive symptoms. One trial included 206 adults (mean age 52 years) who were randomized to take a bolus dose of 2,500 mcg (100,000 IU) vitamin D3 followed by 500 mcg (20,000 IU)/week or a placebo for 4 months [130]. Most participants had minimal or mild depression, had a low mean baseline 25(OH) level of 33.8 nmol/L (13.5 ng/mL), and were not taking antidepressants. The second trial included 155 adults aged 60–80 years who had clinically relevant depressive symptoms, no major depressive disorder, and serum 25(OH)D levels less than 50 to 70 nmol/L (20 to 28 ng/mL) depending on the season; in addition, they were not taking antidepressants [131,132]. Participants were randomized to take either 30 mcg (1,200 IU)/day vitamin D3 or a placebo for 1 year. In the VITAL trial described above, 16,657 men and women 50 years of age and older with no history of depression and 1,696 with an increased risk of recurrent depression (that had not been medically treated for the past 2 years) were randomized to take 50 mcg (2,000 IU)/day vitamin D3 (with or without fish oil) or a placebo for a median of 5.3 years [133]. The groups showed no significant differences in the incidence and recurrent rates of depression, clinically relevant depressive symptoms, or changes in mood scores.

Overall, clinical trials did not find that vitamin D supplements helped prevent or treat depressive symptoms or mild depression, especially in middle-aged to older adults who were not taking prescription antidepressants. No studies have evaluated whether vitamin D supplements may benefit individuals under medical care for clinical depression who have low or deficient 25(OH)D levels and are taking antidepressant medication.

Multiple sclerosis

MS is an autoimmune disease of the central nervous system that damages the myelin sheath surrounding and protecting nerve cells in the brain and spinal cord. This damage hinders or blocks messages between the brain and body, leading to clinical features, such as vision loss, motor weakness, spasticity, ataxia, tremor, sensory loss, and cognitive impairment [134,135]. Some people with MS eventually lose the ability to write, speak, or walk.

The geographical distribution of MS around the world is unequal. Few people near the equator develop the disease, whereas the prevalence is higher further north and south. This uneven distribution has led to speculation that lower vitamin D levels in people who have less sunlight exposure might predispose them to the disease [135].

Many epidemiological and genetic studies have shown an association between MS and low 25(OH)D levels before and after the disease begins [135]. Observational studies suggest that adequate vitamin D levels might reduce the risk of contracting MS and, once MS is present, decrease the risk of relapse and slow the disease’s progression [136]. One study, for example, tested 25(OH)D levels in 1,092 women in Finland an average of 9 years before their MS diagnosis and compared their outcomes with those of 2,123 similar women who did not develop MS [137]. More than half the women who developed MS had deficient or insufficient vitamin D levels. Women with 25(OH)D levels of less than 30 nmol/L (12 ng/mL) had a 43% higher MS risk than women with levels of 50 nmol/L (20 ng/mL) or higher. Among the women with two or more serum 25(OH)D samples taken before diagnosis (which reduced random measurement variation), a 50 nmol/L increase in 25(OH)D was associated with a 41% reduced risk of MS, and 25(OH)D levels less than 30 nmol/L were associated with an MS risk that was twice as high as levels of 50 nmol/L or higher.

Two earlier prospective studies of similar design—one in the United States with 444 non-Hispanic White individuals [138] and the other with 576 individuals in northern Sweden [139]—found that levels of 25(OH)D greater than 99.1 nmol/L (39.6 ng/mL) and at least 75 nmol/L (30 ng/mL), respectively, were associated with a 61–62% lower risk of MS.

No clinical trials have examined whether vitamin D supplementation can prevent the onset of MS, but several have investigated whether supplemental vitamin D can help manage the disease. A 2018 Cochrane review analyzed 12 such trials that had a total of 933 participants with MS; the reviewers judged all of these trials to be of low quality [135]. Overall, vitamin D supplementation, when compared with placebo administration, had no effect on relevant clinical outcomes, such as recurrent relapse or worsened disability.

Experts have reached no firm consensus on whether vitamin D can help prevent MS given the lack of clinical trial evidence [140]. In addition, studies have not consistently shown that vitamin D supplementation tempers the signs and symptoms of active MS or reduces rates of relapse.

Type 2 diabetes

Vitamin D plays a role in glucose metabolism. It stimulates insulin secretion via the vitamin D receptor on pancreatic beta cells and reduces peripheral insulin resistance through vitamin D receptors in the muscles and liver [141]. Vitamin D might be involved in the pathophysiology of type 2 diabetes through its effects on glucose metabolism and insulin signaling as well as its ability to reduce inflammation and improve pancreatic beta-cell function [142,143].

Observational studies have linked lower serum 25(OH)D levels to an increased risk of diabetes, but their results might have been confounded by the fact that many participants were overweight or obese and were therefore more predisposed to developing diabetes and having lower 25(OH)D levels [1]. A review of 71 observational studies in adults with and without type 2 diabetes from 16 countries found a significant inverse relationship between vitamin D status and blood sugar levels in participants who did and did not have diabetes [144].

In contrast to observational studies, clinical trials provide little support for the benefits of vitamin D supplementation for glucose homeostasis. One trial included 65 overweight or obese adult men and women (mean age 32 years) who were otherwise healthy, did not have diabetes, and had low serum vitamin D levels (at or below 50 nmol/L [20 ng/mL]) [145]. The investigators randomly assigned participants to receive either a bolus oral dose of 2,500 mcg (100,000 IU) vitamin D3 followed by 100 mcg (4,000 IU)/day or a placebo for 16 weeks. In the 54 participants who completed the study, vitamin D supplementation did not improve insulin sensitivity or insulin secretion in comparison with placebo.

One systematic review and meta-analysis evaluated 35 clinical trials that included 43,407 adults with normal glucose tolerance, prediabetes, or type 2 diabetes who received a median of 83 mcg (3,332 IU)/day vitamin D supplements or placebo for a median of 16 weeks [146]. Vitamin D had no significant effects on glucose homeostasis, insulin secretion or resistance, or hemoglobin A1c levels (a measure of average blood sugar levels over the previous 2–3 months), irrespective of the study population, vitamin D dose, or trial quality.

Several trials have investigated whether vitamin D supplementation can prevent the transition from prediabetes to diabetes in patients with adequate 25(OH)D levels, and all have had negative results. In a trial in Norway, 511 men and women aged 25–80 years (mean age 62 years) with prediabetes received 500 mcg (20,000 IU) vitamin D3 or a placebo each week for 5 years [147]. The results showed no significant differences in rates of progression to type 2 diabetes; in serum glucose, insulin, or hemoglobin A1c levels; or in measures of insulin resistance. At baseline, participants had an adequate mean serum 25(OH)D level of 60 nmol/L (24 ng/mL).

The largest trial to date of vitamin D supplements for diabetes prevention randomized 2,423 men and women aged 25 years and older (mean age 60 years) with prediabetes who were overweight or obese (mean BMI of 32.1) to 100 mcg (4,000 IU)/day vitamin D3 or placebo for a median of 2.5 years [143]. Most participants (78%) had adequate serum levels of vitamin D at baseline (at least 50 nmol/L [20 ng/mL]). Vitamin D did not significantly prevent the development of diabetes in comparison with placebo. However, a post hoc analysis showed a 62% lower incidence of diabetes among participants with low baseline serum 25(OH)D levels (less than 30 nmol/L [12 ng/mL]) who took the vitamin D supplement than among those who took the placebo [143,148].

Studies have also assessed the value of vitamin D supplementation for managing diabetes, and they have found that the vitamin offers limited benefits. One meta-analysis of 20 clinical trials compared the effects of 0.5 mcg (20 IU)/day to 1,250 mcg (50,000 IU)/week vitamin D supplementation for 2–6 months with those of placebo on glycemic control in 2,703 adults from around the world who had diabetes [141]. The vitamin D reduced insulin resistance to a small but significant degree, especially in people taking more than 50 mcg (2,000 IU)/day who were vitamin D deficient at baseline, had good glycemic control, were not obese, and were of Middle Eastern ethnicity. However, the supplementation had no significant effects on fasting blood glucose, hemoglobin A1c, or fasting insulin levels.

Clinical trials to date provide little evidence that vitamin D supplementation helps maintain glucose homeostasis, reduces the risk of progression from prediabetes to type 2 diabetes, or helps manage the disease, particularly in vitamin D-replete individuals.

Weight loss

Observational studies indicate that greater body weights are associated with lower vitamin D status, and obese individuals frequently have marginal or deficient circulating 25(OH)D levels [149]. However, clinical trials do not support a cause-and-effect relationship between vitamin D and weight loss.

A systematic review and meta-analysis of 15 weight-loss intervention studies that used caloric restriction, exercise, or both, but not necessarily vitamin D supplementation or other treatments, found that people who lost weight had significantly greater increases in serum 25(OH)D levels than those who maintained their weight [150]. In another study, 10 mcg (400 IU)/day vitamin D and 1,000 mg/day calcium supplementation slightly, but significantly, reduced weight gain amounts in comparison with placebo in postmenopausal women, especially those with a baseline total calcium intake of less than 1,200 mg/day [151]. However, a meta-analysis of 12 vitamin D supplementation trials (including 5 in which body composition measurements were primary outcomes) found that vitamin D supplements without calorie restriction did not affect body weight or fat mass when the results were compared with those of placebo [152].

Overall, the available research suggests that consuming higher amounts of vitamin D or taking vitamin D supplements does not promote weight loss.

Health Risks from Excessive Vitamin D

Excess amounts of vitamin D are toxic. Because vitamin D increases calcium absorption in the gastrointestinal tract, vitamin D toxicity results in marked hypercalcemia (total calcium greater than 11.1 mg/dL, beyond the normal range of 8.4 to 10.2 mg/dL), hypercalciuria, and high serum 25(OH)D levels (typically greater than 375 nmol/l [150 ng/mL]) [153]. Hypercalcemia, in turn, can lead to nausea, vomiting, muscle weakness, neuropsychiatric disturbances, pain, loss of appetite, dehydration, polyuria, excessive thirst, and kidney stones.

In extreme cases, vitamin D toxicity causes renal failure, calcification of soft tissues throughout the body (including in coronary vessels and heart valves), cardiac arrhythmias, and even death. Vitamin D toxicity has been caused by consumption of dietary supplements that contained excessive vitamin D amounts because of manufacturing errors, that were taken inappropriately or in excessive amounts, or that were incorrectly prescribed by physicians, [153-155].

Experts do not believe that excessive sun exposure results in vitamin D toxicity because thermal activation of previtamin D3 in the skin gives rise to various non-vitamin D forms that limit formation of vitamin D3. Some vitamin D3 is also converted to nonactive forms [1]. However, frequent use of tanning beds, which provide artificial UV radiation, can lead to 25(OH)D levels well above 375–500 nmol/L (150–200 ng/mL) [156-158].

The combination of high intakes of calcium (about 2,100 mg/day from food and supplements) with moderate amounts of vitamin D (about 19 mcg [765 IU]/day from food and supplements) increased the risk of kidney stones by 17% over 7 years among 36,282 postmenopausal women who were randomly assigned to take 1,000 mg/day calcium and 10 mcg (400 IU)/day vitamin D or a placebo [159]. However, other, shorter (from 24 weeks to 5 years) clinical trials of vitamin D supplementation alone or with calcium in adults found greater risks of hypercalcemia and hypercalciuria, but not of kidney stones [160,161].

The FNB established ULs for vitamin D in 2010 (Table 4) [1]. While acknowledging that signs and symptoms of toxicity are unlikely at daily intakes below 250 mcg (10,000 IU), the FNB noted that even vitamin D intakes lower than the ULs might have adverse health effects over time. The FNB recommended avoiding serum 25(OH)D levels above approximately 125–150 nmol/L (50–60 ng/mL), and it found that even lower serum levels (approximately 75–120 nmol/L [30–48 ng/mL]) are associated with increases in rates of all-cause mortality, risk of cancer at some sites (e.g., pancreas), risk of cardiovascular events, and number of falls and fractures among older adults.

Table 4: Tolerable Upper Intake Levels (ULs) for Vitamin D [1]
Age Male Female Pregnancy Lactation
0-6 months 25 mcg (1,000 IU) 25 mcg (1,000 IU)
7–12 months 38 mcg (1,500 IU) 38 mcg (1,500 IU)
1–3 years 63 mcg (2,500 IU) 63 mcg (2,500 IU)
4–8 years 75 mcg (3,000 IU) 75 mcg (3,000 IU)
9–18 years 100 mcg (4,000 IU) 100 mcg (4,000 IU) 100 mcg (4,000 IU) 100 mcg (4,000 IU)
19+ years 100 mcg (4,000 IU) 100 mcg (4,000 IU) 100 mcg (4,000 IU) 100 mcg (4,000 IU)

Interactions with Medications

Vitamin D supplements may interact with several types of medications. A few examples are provided below. Individuals taking these and other medications on a regular basis should discuss their vitamin D intakes and status with their healthcare providers.

Orlistat

The weight-loss drug orlistat (Xenical® and alli®), together with a reduced-fat diet, can reduce the absorption of vitamin D from food and supplements, leading to lower 25(OH)D levels [162-165].

Statins

Statin medications reduce cholesterol synthesis. Because endogenous vitamin D is derived from cholesterol, statins may also reduce vitamin D synthesis [165]. In addition, high intakes of vitamin D, especially from supplements, might reduce the potency of atorvastatin (Lipitor®), lovastatin (Altoprev® and Mevacor®), and simvastatin (FloLipid™ and Zocor®), because these statins and vitamin D appear to compete for the same metabolizing enzyme [165-168].

Steroids

Corticosteroid medications, such as prednisone (Deltasone®, Rayos®, and Sterapred®), are often prescribed to reduce inflammation. These medications can reduce calcium absorption and impair vitamin D metabolism [169-171]. In the NHANES 2001–2006 survey, 25(OH)D deficiency (less than 25 nmol/L [10 ng/mL]) was more than twice as common among children and adults who reported oral steroid use (11%) than in nonusers (5%) [172].

Thiazide diuretics

Thiazide diuretics (e.g., Hygroton®, Lozol®, and Microzide®) decrease urinary calcium excretion. The combination of these diuretics with vitamin D supplements (which increase intestinal calcium absorption) might lead to hypercalcemia, especially among older adults and individuals with compromised renal function or hyperparathyroidism [165,173,174].

Vitamin D and Healthful Diets

The federal government’s 2020-2025 Dietary Guidelines for Americans notes that « Because foods provide an array of nutrients and other components that have benefits for health, nutritional needs should be met primarily through foods. … In some cases, fortified foods and dietary supplements are useful when it is not possible otherwise to meet needs for one or more nutrients (e.g., during specific life stages such as pregnancy). »

For more information about building a healthy dietary pattern, refer to the Dietary Guidelines for Americansexternal link disclaimer and the U.S. Department of Agriculture’s MyPlate.external link disclaimer

The Dietary Guidelines for Americans describes a healthy dietary pattern as one that:

  • Includes a variety of vegetables; fruits; grains (at least half whole grains); fat-free and low-fat milk, yogurt, and cheese; and oils.
    Milk, many ready-to-eat cereals, and some brands of yogurt and orange juice are fortified with vitamin D. Cheese naturally contains small amounts of vitamin D. Vitamin D is added to some margarines.
  • Includes a variety of protein foods such as lean meats; poultry; eggs; seafood; beans, peas, and lentils; nuts and seeds; and soy products.
    Fatty fish, such as salmon, tuna, and mackerel, are very good sources of vitamin D. Beef liver and egg yolks have small amounts of vitamin D.
  • Limits foods and beverages higher in added sugars, saturated fat, and sodium.
  • Limits alcoholic beverages.
  • Stays within your daily calorie needs.

References

  1. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press, 2010.
  2. Norman AW, Henry HH. Vitamin D. In: Erdman JW, Macdonald IA, Zeisel SH, eds. Present Knowledge in Nutrition, 10th ed. Washington DC: Wiley-Blackwell, 2012.
  3. Jones G. Vitamin D. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, eds. Modern Nutrition in Health and Disease, 11th ed. Philadelphia: Lippincott Williams & Wilkins, 2014.
  4. Silva MC, Furlanetto TW. Intestinal absorption of vitamin D: A systematic review. Nutr Rev 2018;76:60-76. [PubMed abstract]
  5. Sempos CT, Heijboer AC, Bikle DD, Bollerslev J, Bouillon R, Brannon PM, et al. Vitamin D assays and the definition of hypovitaminosis D. Results from the First International Conference on Controversies in Vitamin D. Br J Clin Pharmacol 2018;84:2194-207. [PubMed abstract]
  6. LeFevre ML. Screening for vitamin deficiency in adults: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2015;162:133-40. [PubMed abstract]
  7. Brooks SPJ, Sempos CT. The importance of 25-hydroxyvitamin D assay standardization and the Vitamin D Standardization Program. Journal of AOAC International 2017;100:1223-4.
  8. Taylor CL, Sempos CT, Davis CD, Brannon PM. Vitamin D: moving forward to address emerging science. Nutrients 2017, 9, 1308; doi:10.3390/mu9121308. [PubMed abstract]
  9. Sempos CT, Binkley N. 25-hydroxyvitamin D assay standardisation and vitamin D guidelines paralysis. Public Health Nutrition 2020;23:1153-64. [PubMed abstract]
  10. Office of Dietary Supplements, National Institutes of Health. Vitamin D Standardization Program (VDSP).
  11. MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2011;96:1911-30. [PubMed abstract]
  12. Rosen CJ, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, et al. IOM committee members respond to Endocrine Society vitamin D guidelines. J Clin Endocrinol Metab 2012;97:1146-52. [PubMed abstract]
  13. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266-81. [PubMed abstract]
  14. Brown LL, Cohen B, Tabor D, Zappala G, Maruvada P, Coates PM. The vitamin D paradox in Black Americans: A systems-based approach to investigating clinical practice, research, and public health—expert panel meeting report. BMC Proceedings, 2018;12(Suppl 6):6. [PubMed abstract]
  15. Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol 2017;13:466-79. [PubMed abstract]
  16. Scientific Advisory Committee on Nutrition. Vitamin D and Healthexternal link disclaimer. 2016.
  17. Roseland JM, Phillips KM, Patterson KY, Pehrsson PR, Taylor CL. Vitamin D in foods: An evolution of knowledge. Pages 41-78 in Feldman D, Pike JW, Bouillon R, Giovannucci E, Goltzman D, Hewison M, eds. Vitamin D, Volume 2: Health, Disease and Therapeutics, Fourth Edition. Elsevier, 2018.
  18. U.S. Food and Drug Administration. Food additives permitted for direct addition to food for human consumption; vitamin D2 mushroom powder. Federal Register 2020;85:41916-20.
  19. Borel P, Caillaud D, Cano NJ. Vitamin D bioavailability: State of the art. Crit Rev Food Sci Nutr 2015;55:1193-205. [PubMed abstract]
  20. Taylor CL, Patterson KY, Roseland JM, Wise SA, Merkel JM, Pehrsson PR, Yetley EA. Including food 25-hydroxyvitamin D in intake estimates may reduce the discrepancy between dietary and serum measures of vitamin D status. J Nutr 2014;144:654-9. [PubMed abstract]
  21. Cashman KD, Seamans KM, Lucey AJ, Stocklin E, Weber P, Kiely M, Hill TR. Relative effectiveness of oral 25-hydroxyvitamin D3 and vitamin D3 in raising wintertime serum 25-hydroxyvitamin D in older adults. Am J Clin Nutr 2012;95:1350-6. [PubMed abstract]
  22. Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States and Canada: Current status and data needs. Am J Clin Nutr 2004;80:1710S-6S. [PubMed abstract]
  23. Yetley EA. Assessing the vitamin D status of the US population. Am J Clin Nutr 2008;88:558S-64S. [PubMed abstract]
  24. U.S. Food and Drug Administration. Vitamin D for milk and milk alternativesexternal link disclaimer. January 4, 2018.
  25. U.S. Department of Agriculture, Agricultural Research Service. FoodData Centralexternal link disclaimer.
  26. U.S. Food and Drug Administration. Food labeling: Revision of the Nutrition and Supplement Facts labelsexternal link disclaimer. Federal Register 81(103):33742-33999. 2016.
  27. Hossein-nezhad A, Holick MF. Vitamin D for health: A global perspective. Mayo Clin Proc 2013;88:720-55. [PubMed abstract]
  28. U.S. Department of Health and Human Services. The Surgeon General’s Call to Action to Prevent Skin Cancerexternal link disclaimer. Washington, DC: U.S. Dept of Health and Human Services, Office of the Surgeon General; 2014.
  29. Holick MF. Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes 2002;9:87-98.
  30. Weisberg P, Scanlon KS, Li R, Cogswell ME. Nutritional rickets among children in the United States: review of cases reported between 1986 and 2003. Am J Clin Nutr 2004;80:1697S-705S. [PubMed abstract]
  31. Tripkovic L, Lambert H, Hart K, Smith CP, Bucca G, Penson S, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am J Clin Nutr 2012;95:1357-64. [PubMed abstract]
  32. Lehmann U, Hirche F, Stangl GI, Hinz K, Westphal S, Dierkes J. Bioavailability of vitamin D2 and D3 in healthy volunteers, a randomised placebo-controlled trial. J Clin Endocrin Metab 2013;98:4339-45. [PubMed abstract]
  33. Logan VF, Gray AR, Peddie MC, Harper MJ, Houghton LA. Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br J Nutr 2013;109:1082-8. [PubMed abstract]
  34. Tripkovic L, Wilson LR, Hart K, Johnsen S, de Lusignan S, Smith CP, et al. Daily supplementation with 15 µg vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: A 12-wk randomized, placebo-controlled food-fortification trial. Am J Clin Nutr 2017;106:481-90. [PubMed abstract]
  35. Graeff-Armas LA, Bendik I, Kunz I, Schoop R, Hull S, Beck M. Supplemental 25-hydroxycholecalciferol is more effective than cholecalciferol in raising serum 25-hydroxyvitamin D concentrations in older adults. J Nutr 2020;150:73-81. [PubMed abstract]
  36. Quesada-Gomez JM, Bouillon R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos Int 2018;29:1697-1711. [PubMed abstract]
  37. National Institutes of Health. Dietary Supplement Label Database. 2020.
  38. Percent reporting and mean amounts of selected vitamins and minerals food and beverages and dietary supplements by gender and age, in the United States, 2015-2016external link disclaimer. What We Eat in America, NHANES 2015-2016. 2019.
  39. Usual nutrient intake from foods and beverages, by gender and ageexternal link disclaimer. What We Eat in America, NHANES 2013-2016. 2019.
  40. Rooney MR, Harnack L, Michos ED, Ogilvie RP, Sempos CT, Lutsey PL. Trends in use of high-dose vitamin D supplements exceeding 1000 or 4000 International Units daily, 1999-2014. JAMA 2017;317:2448-50. [PubMed abstract]
  41. Taylor CL, Roseland JM, Coates PM, Pehrsson PR. The emerging issue of 25-hydroxyvitamin D in foods. J Nutr 2016;146:855-6. [PubMed abstract]
  42. Herrick KA, Storandt RJ, Afful J, Pfeiffer CM, Schleicher RL, Gahche JJ, Potischman N. Vitamin D status in the United States, 2011-2014. Am J Clin Nutr 2019;110:150-7. [PubMed abstract]
  43. Elder CJ, Bishop NJ. Rickets. Lancet 2014;383:1665-76. [PubMed abstract]
  44. Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab 2016;101:394-415. [PubMed abstract]
  45. Uday S, Hogler W. Nutritional rickets and osteomalacia in the twenty-first century: Revised concepts, public health, and prevention strategies. Curr Osteoporos Rep 2017;15:293-302. [PubMed abstract]
  46. Weisberg P, Scanlon KS, Li R, Cogswell ME. Nutritional rickets among children in the United States: Review of cases reported between 1986 and 2003. Am J Clin Nutr 2004;80:1697S-705S. [PubMed abstract]
  47. Thacher TM, Fischer PR, Tebben PJ, Singh RJ, Cha SS, Maxson JA, Yawn BP. Increasing incidence of nutritional rickets: A population-based study in Olmsted County, Minnesota. Mayo Clin Proc 2013;88:176-83. [PubMed abstract]
  48. Ward LM, Gaboury I, Ladhani M, Zlotkin S. Vitamin D-deficiency rickets among children in Canada. CMAJ 2007;177:161-6. [PubMed abstract]
  49. Rajakumar K. Vitamin D, cod-liver oil, sunlight, and rickets: A historical perspective. Pediatrics 2003;112:e132-5. [PubMed abstract]
  50. Creo AL, Thacher TD, Pettifor JM, Strand MA, Ficsher PR. Nutritional rickets around the world: An update. Paediatr Int Child Health 2017;37:84-98. [PubMed abstract]
  51. Rockwell M, Kraak V, Hulver M, Epling J. Clinical management of low vitamin D: A scoping review of physicians’ practices. Nutrients 2018 Apr 16;10(4). pii: E493. doi: 10.3390/nu10040493. [PubMed abstract]
  52. Taylor CL, Thomas PR, Aloia JF, Millard PS. Questions about vitamin D for primary care practice: Input from an NIH conference. Am J Med 2015;128:1167-70. [PubMed abstract]
  53. Taylor CL, Rosen CJ, Dwyer JT. Considerations in dietetic counseling for vitamin D. J Acad Nutr Diet 2019;119:901-9. [PubMed abstract]
  54. Agency for Healthcare Research and Quality. Screening for vitamin D deficiency: Systematic review for the U.S. Preventive Services Task Force recommendation. Evidence Synthesis Number 118. AHRQ-Pub No. 13-05183-EF-1. June 2014.
  55. Picciano MF. Nutrient composition of human milk. Pediatr Clin North Am 2001;48:53-67. [PubMed abstract]
  56. Wagner CL, Greer FR, American Academy of Pediatrics Section on Breastfeeding, American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008;122:1142-52. [PubMed abstract]
  57. Dawodu A, Tsang RC. Maternal vitamin D status: Effect on milk vitamin D content and vitamin D status of breastfeeding infants. Adv Nutr 2012;3:353-61. [PubMed abstract]
  58. Davis CD, Dwyer JT. The ‘sunshine vitamin’: benefits beyond bone? J Natl Cancer Inst 2007;99:1563-5. [PubMed abstract]
  59. Simon AE, Ahrens KA. Adherence to vitamin D intake guidelines in the United States. Pediatrics 2020;145:e20193574. [PubMed abstract]
  60. Chalcraft JR, Cardinal LM, Wechsler PJ, Hollis BW, Gerow KG, Alexander BM, et al. Vitamin D synthesis following a single bout of sun exposure in older and younger men and women. Nutrients 2020; 12, 2237; doi:10.3390/nu12082237. [PubMed abstract]
  61. Sowah D, Fan X, Dennett L, Hagtvedt R, Straube S. Vitamin D levels and deficiency with different occupations: A systematic review. BMC Public Health 2017;17:519. [PubMed abstract]
  62. Pappa HM, Bern E, Kamin D, Grand RJ. Vitamin D status in gastrointestinal and liver disease. Curr Opin Gastroenterol 2008;24:176-83. [PubMed abstract]
  63. Drincic A, Fuller E, Heaney RP, Armas LAG. 25-hydroxyvitamin D response to graded vitamin D3 supplementation among obese adults. J Clin Endocrinol Metab 2013;98:4845-51. [PubMed abstract]
  64. Ekwaru JP, Zwicker JD, Holick MF, Giovannucci E, Veugelers PJ. The importance of body weight for the dose response relationship of oral vitamin D supplementation and serum 25-hydroxyvitamin D in healthy volunteers. PLOS ONE 2014;9:e111265. [PubMed abstract]
  65. Chakhtoura M, Rahme M, Fuleihan E-H. Vitamin D metabolism in bariatric surgery. Endocrinol Metab Clin North Am 2017;46:947-82. [PubMed abstract]
  66. Peterson L, Zeng X, Caufield-Noll CP, Schweitzer MA, Magnuson TH, Steele KE. Vitamin D status and supplementation before and after bariatric surgery: A comprehensive literature review. Surg Obes Relat Dis 2016;12:693-702. [PubMed abstract]
  67. Chakhtoura MT, Nakhoul N, Akl EA, Mantzoros CS, El Hajj Guleihan GA. Guidelines on vitamin D replacement in bariatric surgery? Identification and systematic appraisal. Metabolism 2016;65:586-97. [PubMed abstract]
  68. Newberry SJ, Chung M, Shekelle PG, Booth MS, Liu JL, Maher AR, et al. Vitamin D and calcium: A systematic review of health outcomes (update). Evidence Report/Technology Assessment No. 217. (Prepared by the Southern California Evidence-based Practice Center under Contract No. 290- 2012-00006-I.) AHRQ Publication No. 14-E004-EF. Rockville, MD: Agency for Healthcare Research and Quality. September 2014.
  69. Sempos CT, Carter GD, Binkley NC. 25-hydroxyvitamin D assays: Standardization, guidelines, problems, and interpretation. Pages 939-57 in Feldman D, Pike JW, Bouillon R, Giovannucci E, Goltzman D, Hewison M, eds. Vitamin D, Volume 1: Biochemistry, Physiology and Diagnostics, Fourth Edition. Elsevier, 2018.
  70. Jin, J. Vitamin D and calcium supplements for preventing fractures. JAMA 2018;319:1630. [PubMed abstract]
  71. National Institutes of Health Osteoporosis and Related Bone Diseases National Resource Center. Osteoporosis Overview.
  72. Hansen D, Bazell C, Pelizzari P, Pyenson B. Medicare cost of osteoporotic fracturesexternal link disclaimer. Milliman research report, August 2019.
  73. Chung M, Balk EM, Brendel M, Ip S, Lau J, Lee J, et al. Vitamin D and calcium: A systematic review of health outcomes. Evidence Report/Technology Assessment No. 183 prepared by the Tufts Evidence-based Practice Center under Contract No. 290-2007-10055-I. AHRQ Publication No. 09-E015. Rockville, MD: Agency for Healthcare Research and Quality, 2009.
  74. U.S. Preventive Services Task Force. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults. US Preventive Services Task Force recommendation statement. JAMA 2018;319:1592-9. [PubMed abstract]
  75. Kahwati LC, Weber RP, Pan H, Gourlay M, LeBlanc E, Coker-Schwimmer M, Viswanathan M. Vitamin D, calcium, or combined supplementation for the primary prevention of fractures in community-dwelling adults: Evidence report and systematic review for the US Preventive Services Task Force. JAMA 2018;319:1600-12. [PubMed abstract]
  76. Guirguis-Blake JM, Michael YL, Perdue LA, Coppola EL, Beil TL. Interventions to prevent falls in older adults: Updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2018;319:1705-16. [PubMed abstract]
  77. U.S. Preventive Services Task Force. Interventions to prevent falls in community-dwelling older adults. US Preventive Services Task Force recommendation statement. JAMA 2018;319:1696-1704. [PubMed abstract]
  78. Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: A systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol 2018;6:847-58. [PubMed abstract]
  79. Gallagher JC. Vitamin D and bone density, fractures, and falls: The end of the story? Lancet Diabetes Endocrinol 2018;6:834-5. [PubMed abstract]
  80. Yao P, Bennett D, Mafham M, Lin X, Chen Z, Armitage J, Clarke R. Vitamin D and calcium for the prevention of fracture: A systematic review and meta-analysis. JAMA Network Open 2019;2(12):e1917789. doi: 10.1001/jamanetworkopen.2019.17789.
  81. Aloia JF, Talwar SA, Pollack S, Yeh J. A randomized controlled trial of vitamin D3 supplementation in African American women. Arch Intern Med 2005;165:1618-23. [PubMed abstract]
  82. Aloia JF, Rubinova R, Fazzari M, Islam S, Mikhail M, Ragolia L. Vitamin D and falls in older African American women: The PODA randomized clinical trial. J Am Geriatr Soc 2019;67:1043-49. [PubMed abstract]
  83. Vaes AMM, Tieland M, Toussaint N, Nilwik R, Verdijk LB, van Loon LJC, de Groot CPGM. Cholecalciferol or 25-hydroxycholecalciferol supplementation does not affect muscle strength and physical performance in prefrail and frail older adults. J Nutr 2018;148:712-20. [PubMed abstract]
  84. Shea MK, Fielding RA, Dawson-Hughes B. The effect of vitamin D supplementation on lower-extremity power and function in older adults: a randomized controlled trial. Am J Clin Nutr 2019;109:369-79. [PubMed abstract]
  85. Manson JE, Bassuk SS, Buring JE. Vitamin D, calcium, and cancer: Approaching daylight? JAMA 2017;317:1217-8. [PubMed abstract]
  86. Yin L, Ordonez-Mena JM, Chen T, Schottker B, Arndt V, Brenner H. Circulating 25-hydroxyvitamin D serum concentration and total cancer incidence and mortality: A systematic review and meta-analysis. Preventive Medicine 2013;57:753-64. [PubMed abstract]
  87. Han J, Guo X, Yu X, Liu S, Cui X, Zhang B, Liang H. 25-hydroxyvitamin D and total cancer incidence and mortality: A meta-analysis of prospective cohort studies. Nutrients 2019;11,2295; doi:10.3390/nu11102295. [PubMed abstract]
  88. Keum N, Giovannucci E. Vitamin D supplements and cancer incidence and mortality: A meta-analysis. British Journal of Cancer 2014;111:976-80. [PubMed abstract]
  89. Keum N, Lee DH, Greenwood DC, Manson JE, Giovannucci E. Vitamin D supplementation and total cancer incidence and mortality: A meta-analysis of randomized controlled trials. Ann Oncol 2019;30:733-43. [PubMed abstract]
  90. Bjelakovic G, Gluud LL, Nikolova D, Whitfield K, Krstic G, Wetterslev J, Gluud C. Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst Rev 2014; 23(6):CD007469. doi: 10.1002/14651858.CD007469.pub2. [PubMed abstract]
  91. Manson JE, Cook NR, Lee I-M, Christen W, Bassuk S, Mora S, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med 2019:380:33-44. [PubMed abstract]
  92. McNamara M, Rosenberger KD. The significance of vitamin D status in breast cancer: A state of the science review. J Midwifery Womens Health 2019;64:276-88. [PubMed abstract]
  93. O’Brien KM, Sandler DP, Taylor JA, Weinberg CR. Serum vitamin D and risk of breast cancer within five years. Environ Health Perspect 2017;125(7):077004. [PubMed abstract]
  94. Skaaby T, Husemoen LLN, Thuesen BH, Pisinger C, Jorgensen T, Roswall N, et al. Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol Biomarkers Prev 2014;23:1220-9. [PubMed abstract]
  95. Yao S, Kwan ML, Ergas IJ, Roh JM, Cheng T-YD, Hong C-C, et al. Association of serum level of vitamin D at diagnosis with breast cancer survival: A case-cohort analysis in the Pathways Study. JAMA Oncol 2017;3:351-7. [PubMed abstract]
  96. Wactawski-Wende J, Kotchen JM, Anderson GL, Assaf AR, Brunner RL, O’Sullivan MJ, et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N Engl J Med 2006;354:684-96. [PubMed abstract]
  97. Chlebowski RT, Johnson KC, Kooperberg C, Pettinger M, Wactawski-Wende J, Rohan T, et al. Calcium plus vitamin D supplementation and the risk of breast cancer. J Natl Cancer Inst 2007;100:1581-91. [PubMed abstract]
  98. Cauley JA, Chlebowski RT, Wactawski-Wende J, Robbins JA, Rodabough RJ, Chen Z, et al. Calcium plus vitamin D supplementation and health outcomes five years after active intervention ended: The Women’s Health Initiative. J Womens Health 2013:22,915-29. [PubMed abstract]
  99. McCullough ML, Zoltick ES, Weinstein SJ, Fedirko V, Wang M, Cook NR, et al. Circulating vitamin D and colorectal cancer risk: An international pooling project of 17 cohorts. J Natl Cancer Inst 2019;111:158-69. [PubMed abstract]
  100. Crockett SD, Barry EL, Mott LA, Ahnen DJ, Robertson DJ, Anderson JC, et al. Calcium and vitamin D supplementation and increased risk of serrated polyps: Results from a randomised clinical trial. Gut. 2019 Mar;68(3):475-486. [PubMed abstract]
  101. Song M, Lee IM, Manson JE, Buring JE, Dushkes R, Gordon D, et al. No association between vitamin D supplementation and risk of colorectal adenomas or serrated polyps in a randomized trial. Clin Gastroeterol Hepatol 2020; published online ahead of print. [PubMed abstract]
  102. Muller DC, Hodge AM, Fanidi A, Albanes D, Mai XM, Shu XO, et al. No association between circulating concentrations of vitamin D and risk of lung cancer: An analysis in 20 prospective studies in the Lung Cancer Cohort Consortium (LC3). Ann Oncol 2018;29:1468-75. [PubMed abstract]
  103. van Duijnhoven FJB, Jenab M, Hveem K, Siersema PD, Fedirko V, Duell EJ, et al. Circulating concentrations of vitamin D in relation to pancreatic cancer risk in European populations. Int J Cancer 2018;142:1189-201. [PubMed abstract]
  104. Stolzenberg-Solomon RZ, Vieth R, Azad A, Pietinen P, Taylor PR, Virtamo J, et al. A prospective nested case-control study of vitamin D status and pancreatic cancer risk in male smokers. Cancer Res 2006;66:10213-9. [PubMed abstract]
  105. Helzlsouer KJ for the VDPP Steering Committee. Overview of the Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am J Epidemiol 2010;172:4-9. [PubMed abstract]
  106. Xu Y, Shao X, Yao Y, Xu L, Chang L, Jiang Z, Lin Z. Positive association between circulating 25-hydroxyvitamin D levels and prostate cancer risk: New findings from an updated meta-analysis. J Cancer Res Clin Oncol 2014;140:1465-77. [PubMed abstract]
  107. Kristal AR, Till C, Song X, Tangen CM, Goodman PJ, Neuhauser ML, et al. Plasma vitamin D and prostate cancer risk: Results from the Selenium and Vitamin E Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev 2014;23:1494-504. [PubMed abstract]
  108. Schenk JM, Till CA, Tangen CM, Goodman PJ, Song X, Torkko KC, et al. Serum 25-hydroxyvitamin D concentrations and risk of prostate cancer: Results from the Prostate Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev 2014;23:1484-93. [PubMed abstract]
  109. Heath AK, Hodge AM, Ebeling PR, Eyles DW, Kvaskoff D, Buchanan DD, et al. Circulating 25-hydroxyvitamin D concentration and risk of breast, prostate, and colorectal cancers: The Melbourne Collaborative Cohort Study. Cancer Epidemiol Biomarkers Prev 2019;28:900-8. [PubMed abstract]
  110. Jiang X, Dimou NL, Al-Dabhani K, Lewis SJ, Martin RM, Haycock PC, et al. Circulating vitamin D concentrations and risk of breast and prostate cancer: A Mendelian randomization study. International Journal of Epidemiology 2019;48:1416-24. [PubMed abstract]
  111. Travis RC, Perez-Cornago A, Appleby PN, Albanes D, Joshu CE, Lutsey PL, et al. A collaborative analysis of individual participant data from 19 prospective studies assesses circulating vitamin D and prostate cancer risk. Cancer Res 2019;79:274-85. [PubMed abstract]
  112. Nair-Shalliker V, Bang A, Egger S, Clements M, Gardiner RA, Kricker A, et al. Post-treatment levels of plasma 25- and 1,25-dihydroxy vitamin D and mortality in men with aggressive prostate cancer. Scientific Reports 2020;10:7736. [PubMed abstract]
  113. Song Z-y, Yao Q, Zhuo Z, Ma Z, Chen G. Circulating vitamin D level and mortality in prostate cancer patients: A dose-response meta-analysis. Endocrine Connections 2018;7:R294-303. [PubMed abstract]
  114. Shahvazi S, Soltani S, Ahmadi SM, de Souza RJ, Salehi-Abargouei A. The effect of vitamin D supplementation on prostate cancer: A systematic review and meta-analysis of clinical trials. Horm Metab Res 2019;51:11-21. [PubMed abstract]
  115. Moyer VA. Vitamin, mineral, and multivitamin supplements for the primary prevention of cardiovascular disease and cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2014;160:558-64. [PubMed abstract]
  116. Kassi E, Adamopoulos C, Basdra EK, Papavassiliou AG. Role of vitamin D in atherosclerosis. Circulation 2013;128:2517-31. [PubMed abstract]
  117. Mheid IA, Quyyumi AA. Vitamin D and cardiovascular disease: Controversy unresolved. J Am Coll Cardiol 2017;70:89-100. [PubMed abstract]
  118. Zhang R, Li B, Gao X, Tian R, Pan Y, Jiang Y, et al. Serum 25-hydroxyvitamin D and the risk of cardiovascular disease: Dose-response meta-analysis of prospective studies. Am J Clin Nutr 2017;105:810-9. [PubMed abstract]
  119. Durup D, Jorgensen HL, Christensen J, Tjonnland A, Olsen A, Halkjaer J, et al. A reverse J-shaped association between serum 25-hydroxyvitamin D and cardiovascular disease mortality: The CopD study. J Clin Endorcinol Metab 2015;100:2339-46. [PubMed abstract]
  120. Brondum-Jacobsen P, Benn M, Jensen GB, Nordestgaard BG. 25-hydroxyvitamin D levels and risk of ischemic heart disease, myocardial infarction, and early death: Population-based study and meta-analyses of 18 and 17 studies. Arterioscler Thromb Vasc Biol 2012;32:2794-802. [PubMed abstract]
  121. Zhou R, Wang M, Huang H, Li W, Hu Y, Wu T. Lower vitamin D status is associated with an increased risk of ischemic stroke: A systematic review and meta-analysis. Nutrients 2018; 10, 277;doi:10.3390/nu10030277. [PubMed abstract]
  122. Scragg R, Stewart AW, Waayer D, Lawes CMM, Toop L, Sluyter J, et al. Effect of monthly high-dose vitamin D supplementation on cardiovascular disease in the Vitamin D Assessment Study: A randomized clinical trial. JAMA Cardiol 2017;2:608-16. [PubMed abstract]
  123. Ford JA, MacLennan GS, Avenell A, Bolland M, Grey A, Witham M. Cardiovascular disease and vitamin D supplementation: Trial analysis, systematic review, and meta-analysis. Am J Clin Nutr 2014;100:746-55. [PubMed abstract]
  124. Dibaba DT. Effect of vitamin D supplementation on serum lipid profiles: A systematic review and meta-analysis. Nutr Rev 2019;77:890-902. [PubMed abstract]
  125. Beveridge LA, Struthers AD, Khan F, Jorde R, Scragg R, Macdonald HM, et al. Effect of vitamin D supplementation on blood pressure: A systematic review and meta-analysis incorporating individual patient data. JAMA Intern Med 2015;175:745-54. [PubMed abstract]
  126. Golzarand M, Shab-Bidar S, Koochakpoor G, Speakman JR, Djafarian K. Effect of vitamin D3 supplementation on blood pressure in adults: An updated meta-analysis. Nutr Metab Cardiovasc Dis 2016;26:663-73. [PubMed abstract]
  127. Vimaleswaran KS, Cavadino A, Berry DJ, Jorde R, Dieffenbach AK, Lu C, et al. Association of vitamin D status with arterial blood pressure and hypertension risk: A mendelian randomisation study. Lancet Diabetes-Endocrinol 2014;2:719-29. [PubMed abstract]
  128. Anglin RES, Samaan Z, Walter SD, McDonald SD. Vitamin D deficiency and depression in adults: Systematic review and meta-analysis. The British Journal of Psychiatry 2013;202:100-7. [PubMed abstract]
  129. Gowda U, Mutowo MP, Smith BJ, Wluka AE, Renzaho AMN. Vitamin D supplementation to reduce depression in adults: Meta-analysis of randomized controlled trials. Nutrition 2015;31:421-9. [PubMed abstract]
  130. Jorde R, Kubiak J. No improvement in depressive symptoms by vitamin D supplementation: Results from a randomised controlled trial. Journal of Nutrition Science 2018;7:1-7. [PubMed abstract]
  131. de Koning EJ, Lips P, Penninx BWJH, Elders PJM, Heijboer AC, den Heijer M, et al. Vitamin D supplementation for the prevention of depression and poor physical function in older persons: The D-Vitaal study, a randomized clinical trial. Am J Clin Nutr 2019;110:1119-30. [PubMed abstract]
  132. Jorde R, Grimnes G. Vitamin D: No cure for depression. Am J Clin Nutr 2019;110:1043-4. PMID: 31504098 [PubMed abstract]
  133. Okereke OI, Reynolds III CF, Mischoulon D, Chang G, Vyas CM, Cook NR, et al. Effect of long-term vitamin D3 supplementation vs placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: A randomized clinical trial. JAMA 2020;324:471-80. [PubMed abstract]
  134. MedLinePlus. Multiple sclerosis. 2020.
  135. Jagannath VA, Filippini G, Di Pietrantonj C, Asokan GV, Robak EW, Whamond L, Robinson SA. Vitamin D for the management of multiple sclerosis (review). Cochrane Database of Systematic Reviews 2018, issue 9, Art. No.: CD008422. DOI: 10.1002/14651858.CD008422.pub3. [PubMed abstract]
  136. Sintzel MB, Rametta M, Reder AT. Vitamin D and multiple sclerosis: A comprehensive review. Neurol Ther 2018;7:59-85. [PubMed abstract]
  137. Munger K, Hongell K, Aivo J, Soilu-Hanninen M, Surcel H-M, Ascherio A. 25-hydroxyvitamin D deficiency and risk of MS among women in the Finnish Maternity Cohort. Neurology 2017;89: 1578-83. [PubMed abstract]
  138. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006;296:2832-8. [PubMed abstract]
  139. Salzer J, Hallmans G, Nystrom M, Stenlund H. Wadell G, Sundstrom P. Vitamin D as a protective factor in multiple sclerosis. Neurology 2012;79:2140-5. [PubMed abstract]
  140. Marrie RA, Beck CA. Preventing multiple sclerosis: To (take) vitamin D or not to (take) vitamin D? Neurology 2017;89:1538-9. [PubMed abstract]
  141. Li X, Liu Y, Zheng Y, Wang P, Zhang Y. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Nutrients 2018; 10, 375; doi:10.3390/nu10030375 [PubMed abstract]
  142. Mousa A, Naderpoor N, Teede H, Scragg R, de Courten, B. Vitamin D supplementation for improvement of chronic low-grade inflammation in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2018;76:380-94. [PubMed abstract]
  143. Pittas A, Dawson-Hughes B, Sheehan P, Ware JH, Knowler WC, Aroda VR, et al. Vitamin D supplementation and prevention of type 2 diabetes. N Engl J Med 2019;381:520-30. [PubMed abstract]
  144. Rafiq S, Jeppesen PB. Is hypovitaminosis D related to incidence of type 2 diabetes and high fasting glucose level in healthy subjects: A systematic review and meta-analysis of observational studies. Nutrients 2018, 10, 59; doi:10.3390/nu10010059. [PubMed abstract]
  145. Mousa A, Naderpoor N, de Courten MPJ, Teede H, Kellow N, Walker K, et al. Vitamin D supplementation has no effect on insulin sensitivity or secretion in vitamin D-deficient, overweight or obese adults: A randomized placebo-controlled trial. Am J Clin Nutr 2017;105:1372-81. [PubMed abstract]
  146. Seida JC, Mitri J, Colmers IN, Majumdar SR, Davidson MB, Edwards AL, et al. Effect of vitamin D3 supplementation on improving glucose homeostasis and preventing diabetes: A systematic review and meta-analysis. J Clin Endocrinol Metab 2014;99:3551-60. [PubMed abstract]
  147. Jorde R, Sollid ST, Svartberg J, Schirmer H, Joakimsen RM, Njolstad I, et al. Vitamin D 20 000 IU per week for five years does not prevent progression from prediabetes to diabetes. J Clin Endocrinol Metab 2016;101:1647-55. [PubMed abstract]
  148. Pittas A, Dawson-Hughes B, Staten M. The authors reply: Vitamin D supplementation and prevention of type 2 diabetes. N Engl J Med 2019;381:1785-6. [PubMed abstract]
  149. Earthman CP, Beckman LM, Masodkar K, Sibley SD. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obes (Lond) 2012;36:387-96. [PubMed abstract]
  150. Mallard SR, Howe AS, Houghton LA. Vitamin D status and weight loss: A systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am J Clin Nutr 2016;104:1151-9. [PubMed abstract]
  151. Caan B, Neuhouser M, Aragaki A, Lewis CB, Jackson R, LeBoff MS, et al. Calcium plus vitamin D supplementation and the risk of postmenopausal weight gain. Arch Intern Med 2007;167:893-902. [PubMed abstract]
  152. Pathak K, Soares MJ, Calton EK, Zhao Y, Hallett J. Vitamin D supplementation and body weight status: A systematic review and meta-analysis of randomized controlled trials. Obes Rev 2014;15:528-37. [PubMed abstract]
  153. Galior K, Grebe S, Singh R. Development of vitamin D toxicity from overcorrection of vitamin D deficiency: A review of case reports. Nutrients 2018, 10, 953. [PubMed abstract]
  154. Auguste BL, Avila-Casado C, Bargman JM. Use of vitamin D drops leading to kidney failure in a 54-year-old man. CMAJ 2019;191:E390-4. [PubMed abstract]
  155. Vogiatzi MG, Jacobson-Dickman E, DeBoer MD. Vitamin D supplementation and risk of toxicity in pediatrics: A review of current literature. J Clin Endocrinol Metab 2014;99:1132-41. [PubMed abstract]
  156. Singh P, Trivedi N. Tanning beds and hypervitaminosis D: A case report. Ann Intern Med 2014;160:810-1. [PubMed abstract]
  157. Laurent MR, Gielen E, Pauwels S, Vanderschueren D, Bouillon R. Hypervitaminosis D associated with tanning bed use: A case report. Ann Intern Med 2017;166:155-6. [PubMed abstract]
  158. Perez-Castrillon JL, Vega G, Abad L, Sanz A, Chaves J, Hernandez G, Duenas A. Effects of atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am J Cardiol 2007;99:903-5. [PubMed abstract]
  159. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 2006;354:669-82. [PubMed abstract]
  160. Malihi Z, Lawes CMM, Wu Z, Huang Y, Waayer D, Toop L, et al. Monthly high-dose vitamin D supplementation does not increase kidney stone risk or serum calcium: Results from a randomized controlled trial. Am J Clin Nutr 2019;109:1578-87. [PubMed abstract]
  161. Malihi Z, Wu Z, Stewart AW, Lawes CMM, Scragg R. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: A systematic review and meta-analysis. Am J Clin Nutr 2016;104:1039-51. [PubMed abstract]
  162. Gotfredsen A, Westergren Hendel H, Andersen T. Influence of orlistat on bone turnover and body composition. Int J Obes Relat Metab Disord 2001;25:1154-60. [PubMed abstract]
  163. James WP, Avenell A, Broom J, Whitehead J. A one-year trial to assess the value of orlistat in the management of obesity. Int J Obes Relat Metab Disord 1997;21:S24-30. [PubMed abstract]
  164. McDuffie JR, Calis KA, Booth SL, Uwaifo GI, Yanovski JA. Effects of orlistat on fat-soluble vitamins in obese adolescents. Pharmacotherapy 2002;22:814-22. [PubMed abstract]
  165. Robien K, Oppeneer SJ, Kelly JA, Hamilton-Reeves JM. Drug-vitamin D interactions: A systematic review of the literature. Nutr Clin Pract 2013;28:194-208. [PubMed abstract]
  166. Schwartz JB. Effects of vitamin D supplementation in atorvastatin-treated patients: A new drug interaction with an unexpected consequence. Clin Pharmacol Ther 2009;85:198-203. [PubMed abstract]
  167. Perez-Castrillon JL, Vega G, Abad L, Sanz A, Chaves J, Hernandez G, Duenas A. Effects of atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am J Cardiol 2007;99:903-5. [PubMed abstract]
  168. Aloia JF, Li-Ng M, Pollack S. Statins and vitamin D. Am J Cardiol 2007;100:1329. [PubMed abstract]
  169. Buckley LM, Leib ES, Cartularo KS, Vacek PM, Cooper SM. Calcium and vitamin D3 supplementation prevents bone loss in the spine secondary to low-dose corticosteroids in patients with rheumatoid arthritis. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1996;125:961-8. [PubMed abstract]
  170. de Sevaux RGL, Hoitsma AJ, Corstens FHM, Wetzels JFM. Treatment with vitamin D and calcium reduces bone loss after renal transplantation: a randomized study. J Am Soc Nephrol 2002;13:1608-14. [PubMed abstract]
  171. Lukert BP, Raisz LG. Glucocorticoid-induced osteoporosis: pathogenesis and management. Ann Intern Med 1990;112:352-64. [PubMed abstract]
  172. Skversky AL, Kumar J, Abramowitz MK, Kaskel FJ, Melamed ML. Association of glucocorticoid use and low 25-hydroxyvitamin D levels: Results from the National Health and Nutrition Examination Survey (NHANES): 2001-2006. J Clin Endocrinol Metab 2011;96:3838-45. [PubMed abstract]
  173. Drinka PJ, Nolten WE. Hazards of treating osteoporosis and hypertension concurrently with calcium, vitamin D, and distal diuretics. J Am Geriatr Soc 1984;32:405-7. [PubMed abstract]
  174. Crowe M, Wollner L, Griffiths RA. Hypercalcaemia following vitamin D and thiazide therapy in the elderly. Practitioner 1984;228:312-3. [PubMed abstract]

Disclaimer

This fact sheet by the Office of Dietary Supplements (ODS) provides information that should not take the place of medical advice. We encourage you to talk to your healthcare providers (doctor, registered dietitian, pharmacist, etc.) about your interest in, questions about, or use of dietary supplements and what may be best for your overall health. Any mention in this publication of a specific product or service, or recommendation from an organization or professional society, does not represent an endorsement by ODS of that product, service, or expert advice.

Updated: August 17, 2021 History of changes to this fact sheet

Happy
Happy
0 %
Sad
Sad
0 %
Excited
Excited
0 %
Sleepy
Sleepy
0 %
Angry
Angry
0 %
Surprise
Surprise
0 %

Average Rating

5 Star
0%
4 Star
0%
3 Star
0%
2 Star
0%
1 Star
0%

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *